
Explainable Software Defect Prediction from Cross
Company Project Metrics using Machine Learning

Susmita Haldar
School of Information Technology

Fanshawe College
London, Canada

shaldar@fanshawec.ca

Luiz Fernando Capretz
Department of Electrical and Computer Engineering

Western University
London, Canada
lcapretz@uwo.ca

Abstract—Predicting the number of defects in a project is
critical for project test managers to allocate budget, resources,
and schedule for testing, support and maintenance efforts.
Software Defect Prediction models predict the number of
defects in given projects after training the model with historical
defect related information. The majority of defect prediction
studies focused on predicting defect-prone modules from
methods, and class-level static information, whereas this study
predicts defects from project-level information based on a
cross-company project dataset. This study utilizes software
sizing metrics, effort metrics, and defect density information,
and focuses on developing defect prediction models that apply
various machine learning algorithms. One notable issue in
existing defect prediction studies is the lack of transparency in
the developed models. Consequently, the explain-ability of the
developed model has been demonstrated using the
state-of-the-art post-hoc model-agnostic method called Shapley
Additive exPlanations (SHAP). Finally, important features for
predicting defects from cross-company project information
were identified.

Index Terms—Software Defect Prediction, Defect Density,
Machine Learning Explainability, SHapley Additive
exPlanations

I. INTRODUCTION

As the complexity of software increases, delivering quality
and defect-free software seems challenging due to strict
timeline, and limited budget. Managers strives to identifies
the defects as early as possible in the software development
life cycle because addressing defects in later stages can incur
higher costs [1]. However, Identifying the potential number
of defects in a project takes significant effort. This brings the
need to have an automated process for predicting bugs.
Defect prediction using machine learning is an emerging
technology that leverages human experience by automating
manual efforts to anticipate defects in software systems [2],
[3], [4]. The majority of the SDP studies focused on
identifying defect-prone vs. non-defect-prone modules.
However, it is equally important to consider the number of
defects as fixing a single defect may be less costly and
require less resources compared to fixing a large quantity of
defects.

Obtaining real-world data for training machine learning
models for defect prediction has limitations. Companies may
be hesitant to share proprietary information regarding the

actual number of defects found after project delivery. In
addition, project managers may lack the technical skill-set to
comprehend the predicted outcome. By understanding the
reasoning behind a prediction, project managers could select
and adjust the selected attributes for assessing the need to
allocate more resources in these identified projects with high
number of defects.

Predicting defects from cross-company project information
is important as conducting study on the same type of
projects may not yield a reliable model due to differences in
project types or data collection sources in real-world
problems. Additionally, historical information may not be
available for the same type of projects. Bai et al. [5]
investigated the issues of transfer learning in cross-project
defect prediction and proposed a three-stage weighted
framework for multi-source transfer learning process-based
SDP model. It is also important to understand which features
to be extracted for building an effective SDP model.
Recently, Balogun et al. [6] addressed the fact that the high
dimensionality of software metric features can affect the
performance of SDP models. They conducted feasibility
studies on feature selection of reliable SDP model by
applying hybrid feature selection algorithms.

This study will contribute to software engineering research
domain by answering to the following research questions:

RQ1: Can we build a SDP model from generic
cross-company project-level information without segregating
the project level information based on project size or
development types? RQ2: Are defect density and software
size strong predictors for predicting the number of software
defects in a project? RQ3: Can we identify at least three
features from this cross-company project dataset that are
important for predicting defects based on similar metrics?
RQ4: Can we interpret the predicted number of defects from
the developed SDP model?

This paper is organized into several sections. The related
work on defect prediction using machine learning is presented
in section II. This is followed by the methodology used in
this paper in section III. The SDP models developed using ML
algorithms, and the results are presented in section IV. Section
V summarizes the result analysis and discussion. Threats to
the validity of our work are presented in Section VI. Finally,

Proceedings of the 7th International Conference on Intelligent Computing and Control Systems (ICICCS-2023)
IEEE Xplore Part Number: CFP23K74-ART; ISBN: 979-8-3503-9725-3

979-8-3503-9725-3/23/$31.00 ©2023 IEEE 150

20
23

 7
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 C
om

pu
tin

g
an

d
C

on
tro

l S
ys

te
m

s (
IC

IC
C

S)
 |

97
9-

8-
35

03
-9

72
5-

3/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

IC
C

S5
69

67
.2

02
3.

10
14

25
34

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on June 13,2023 at 22:24:21 UTC from IEEE Xplore. Restrictions apply.

the conclusion and future work are described in section VII.

II. BACKGROUND AND RELATED WORK

Software defect prediction(SDP) has emerged as a popular
research topic over the last several decades [3], [6], [7].
Researchers have utilized various classification techniques to
build these models including Logistic Regression [8], Naı̈ve
Bayes classifier [9], Support Vector Machine [8], Artificial
Neural Networks [10], Decision Tree Classifiers [11],
Random Forest Algorithms [12], kernel PCA [13], Deep
Learning [14], combination of Kernel PCA and Deep
Learning [15] [16] and ensemble learning techniques [17]
etc. Aleem et al. [3] explored different machine learning
techniques for software bug detection and provided a
comparative performance analysis of these algorithms.

Several studies used discretizing continuous defect counts
into defective and non-defective modules for SDP models
[18], [19]. However, binning the continuous data as
independent variable may lead to information loss that can
affect the performance and interpretation of SDP models
[20]. Rajbahadur et al. [20] recommended that future SDP
studies should consider building regression-based classifiers.
In this study, we have used regression-based machine
learning techniques for predicting the total number of
defects.

Felix and Lee [21] proposed certain SDP models
constructed using code design complexity, defect density,
defect introduction time and defect velocity. Their results
indicate that the number of defects shows a strong positive
correlation with the average defect velocity, but a weak
positive correlation with the average defect density and a
negative correlation with the average defect introduction
time. However, in this work, we can observe a significantly
positive relationship with defect density, and number of
defects.

In recent years, the need for explainability in machine
learning models has gained prominent importance. Gezici
and Tarhan [22] utilized three existing model-agnostic-based
techniques referred to as EL5, SHAP and LIME to develop
an explainable defect prediction model based on gradient
boost algorithm classifier. We will explain our SDP model
with SHAP on various classifiers as the cost computation for
this dataset is reasonable.

In 2017, Almakadmeh et al. [23] analyzed the ISBSG
MS-Excel based dataset on Six Sigma measurements and
found that the ISBSG dataset has a high ratio of missing
data within the data fields of the “Total Number of Defects”
variable. They identified that this missing ratio represents a
serious challenge when the ISBSG dataset is being used for
software defect estimation. To overcome this challenge,
along with other cleaning criteria, we have removed the
records with missing values in the “Total Number of Defects
variable”.

Fadi and Al-Manai [24] found a weak correlation between
size and defects when conducting a study on these variables.
However, our SDP model contradicts this study as functional

size shows a significant correlation with the total number of
defects in a project. Researchers can focus on collecting size-
based metrics from various projects to assist project managers
in determining the estimation of the number of defects for
scheduling and allocating testing resources.

He et al. [25] collected data from several open-source
projects which provided them with information about faulty
vs. non-faulty modules for cross-project defect prediction.
Unlike their study, we are focusing on predicting the total
number of defects instead of just identifying defective vs.
non-defective modules. This approach will provide project
managers with an approximate number of defects.

Shao et al. [26] conducted research on cross-company
project data for building SDP model for ensuring software
security and reliability. Their study was facing limitation of
conducting research with only part of NASA and PROMISE
datasets, and they highlighted the need for collecting more
datasets to verify the effectiveness.

Shin et al. [27] showed the existing explain-ability studies
using model-agnostic techniques exhibits inconsistencies in
explaining the SDP models. Our contribution in this paper
includes verifying if we can see alignment in the major
contributing features.

III. METHODOLOGY

A. Dataset

In this paper, the ISBSG Developments & Enhancements
2021 Release 2 [28] dataset was explored. This original data
repository contains a total of 10600 records with 254
features encompassing a broad range of projects across
various industry sectors and business areas. Also, this dataset
contains projects from over thirty countries [29] worldwide.
These features have different groupings based on application
types, organization sectors, development types, development
environments, scheduling, programming languages,
documentation, tools, and methodologies used in the projects
etc. as part of various project metrics, size metrics, effort
metrics, defect density, quality metrics, effort and other
relevant metrics [30], [31].

B. Feature Extraction and pre-processing

This dataset contains many missing values, and not all
fields are required for our study. We have applied filtering to
retain features that have an acceptable number of records
without being highly correlated. A snapshot of the data
filtering technique has been shown in Table I. This feature
extraction process involved multiple steps. Step 1 involved
removing records with a blank value in total number of
defects field as this feature serves our target variable, and
after this step a total number of 2103 records remained.
Next, in step 2, a field called ”age” was derived by
subtracting the project implementation date from the current
date to assess if the maturity of the project can contribute to
the development of SDP model. In step 3, to select records
with high quality data for building a trustworthy SDP model,
we removed records with poor ratings. According to ISBSG

Proceedings of the 7th International Conference on Intelligent Computing and Control Systems (ICICCS-2023)
IEEE Xplore Part Number: CFP23K74-ART; ISBN: 979-8-3503-9725-3

979-8-3503-9725-3/23/$31.00 ©2023 IEEE 151
Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on June 13,2023 at 22:24:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Final dataset with description.

, a quality rating of C or D indicates that the integrity of the
data could not be assessed or achieved little credibility. After
this cleaning step, a total of 1542 records remained. Step 4
dealt with removing irrelevant information such as project
ID, rating related fields etc. Step 5 involved finding records
with more than 10% of missing values in the column values.
Except for the ”programming language” field, all other
columns with missing values ranging from 1 to 10% were
taken out. The missing values in the programming language
field were filled with the value of ’unknown’. After this
cleaning step, we were left with 12 columns. Step 6
involved removing records with highly internally correlated
values where the correlation exceeded 70%. Fig. 2 shows the
correlation matrix among the remaining non-categorical
predictors in this dataset. From this figure, we can observe
that summarized work effort and adjusted functional points
are highly correlated with functional size and normalized
effort. Consequently, these two features were removed.

The final set of features selected from this dataset is
shown in Fig. 1. The resulting dataset consists of 1254

TABLE I
PRIMARY CRITERIA USED FOR SELECTING RECORDS

Criteria Field
description

Actions taken

Data Quality
Rating

This field
contains an
ISBSG rating
code of A, B, C
or D applied to
the project data

Filtered record
based on value
’A’ or ’B’

UFP rating This field
contains an
ISBSG rating
code of A, B, C
or D applied to
the Functional
Size (Unadjusted
Function Point)

Filtered record
based on value
’A’ or ’B’

Total defects
delivered

Total defects
delivered in the
first month of use
of the software

Not null values

Proceedings of the 7th International Conference on Intelligent Computing and Control Systems (ICICCS-2023)
IEEE Xplore Part Number: CFP23K74-ART; ISBN: 979-8-3503-9725-3

979-8-3503-9725-3/23/$31.00 ©2023 IEEE 152
Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on June 13,2023 at 22:24:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Correlation Matrix for non-categorical features.

records with 10 independent variables, as described in Fig. 1,
and one dependent or target variable namely ”total defects
delivered” field.

Fig. 3. Distribution of programming languages.

Next, the remaining records were further analyzed. The
distribution of programming languages revealed that out of
top 5 prominent programming languages, JAVA covered 44%
of the projects as shown in Fig. 3. Additionally, the majority
of the projects had a development type of enhancements
among 67.3% of the total number of projects, followed by
new development and redevelopment as shown in Fig. 4.

As a preprocessing step, all categorical values were
converted to numerical values using the label encoder from
the Scikit-learn library of Python [31]. Next, the dataset was
split into 70% for training and 30% for training and testing.

We applied standardized scaling to the predictors.
StandardScaler removes the mean and scales each feature to
unit variance. This operation is performed feature-wise [32].

Fig. 4. Distribution of development types.

C. Applied machine learning algorithms

In 2020, citeb33 utilized ensemble tree-based machine
learning algorithms for SDP and obtained acceptable results
on classification problems. In this study, we have applied
various tree-based regression-based machine learning
techniques as tree-based algorithms are popular for
regression problems. Several of these algorithms have
already been applied in classification [33], and a few have
been used for regression problems in SDP models in the
existing literature. The selected existing tree-based machine
learning algorithms utilized for our evaluation have been
listed below: Random Forest Regression: Random Forest
[34] is a combination of tree predictors where each tree
depends on the values of a random vector sampled
independently with the same distribution for all trees in the
forest. AdaBoost Regression: AdaBoost Regression [35] is
a meta-estimator that begins by fitting a regressor on the
original dataset and then fits additional copies of the
regressor on the same dataset. Gradient Boosting
Regression: GBRT [36] is a flexible non-parametric
statistical learning technique for regression. Extra Tree
Regression: Proposed by Geurts et al. [37] in 2006,
Extremely Randomize Tree algorithm is a tree-based method
that implements a meta estimator which fits a number of
randomized decision trees on various sub-samples of the
dataset and uses averaging to improve the predictive
accuracy and control over-fitting. XGBoost Regression:
XGBoost is an efficient implementation of gradient boosting
[38].Catboost Regressor CatBoost is a ML algorithm that
uses gradient boosting on decision trees. [33] Finally, SHAP
[39], a game-theory-based approach to explain the output of
the SDP models, was applied.

D. Evaluation Criteria

For the evaluation of the SDP models, we applied several
commonly used evaluation metrics for regression models in

Proceedings of the 7th International Conference on Intelligent Computing and Control Systems (ICICCS-2023)
IEEE Xplore Part Number: CFP23K74-ART; ISBN: 979-8-3503-9725-3

979-8-3503-9725-3/23/$31.00 ©2023 IEEE 153
Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on June 13,2023 at 22:24:21 UTC from IEEE Xplore. Restrictions apply.

both training and testing datasets. Three of these metrics are
Mean Absolute Error (MAE), Mean Squared Error (MSE)
and Root Mean Squared Error (RMSE). These measures
have been applied in various defect prediction studies [40],
[41]. MAE is calculated as the sum of absolute errors
divided by the sample size, representing the difference
between predicted and actual value [41]. MSE represents the
average of the squared difference of predicted and actual
value. RMSE measures the standard deviation of the
predicted errors which is the squared root of the MSE. To
evaluate how well the developed SDP models explain the
dataset, we also used state-of-the-art evaluation metrics R2

and the adjusted R2 values [42]. R2 can be defined as the
proportion of the total variation in the dependent variable
that is explained by the independent variables. Adjusted R2

is a modification of R2 which adjusts for the number of
explanatory terms. The difference between R-squared and
adjusted R-squared value is that R-squared value assumes
that all the independent variables considered affect the
model, whereas the adjusted R squared value considers only
those independent variables that influence the performance of
SDP models.

IV. RESULTS

In this section, we present the results of the empirical
evaluation conducted to address the research questions. This
study was performed on a dataset containing 1254 projects,
which included projects developed in different programming
languages. The analysis was carried out using Anaconda
Navigator, and Python version 3.9.7. We used various Python
libraries including scikit-learn ensemble and other relevant
packages.

We verified the correlation between the defect density and
total number of defects, as shown in Fig. 5. This figure
demonstrates a strong positive relationship between defect
density and the total number of defects. The correlation
coefficient has a statistical value of 0.7863112869053916
with a p-value of 4.223627046436646e−264. This indicates
that defect density has a highly significant relationship with
the number of defects. Next, the correlation between
functional size and total number of defects were verified as
depicted in Fig. 6. These two variables also show a positive
relationship. The Pearson correlation metrics [43] confirms a
significant relationship between the size of the project and
the number of defects. The Pearson correlation has a
regression coefficient value of 0.29419230162036336, and
p-value of 1.861125251801106e−26.

The results of the applied algorithms are shown in Fig. 7.
The classifiers were evaluated on both training and testing
data. For hyperparameter tuning, RandonSearchCV was
utilized. Afterwards, a 5-fold cross- validation was applied
for each of these algorithms. As expected, the training score
was higher than the testing score in all models. Although
GradientBoostingRegressor and XGBRegressor performed
the best on the training dataset with R-squared, and adjusted
R-squared values, as well as the lowest MAE and MSE, and

Fig. 5. Correlation between defect density and number of defects.

Fig. 6. Correlation between functional size and number of defects.

Proceedings of the 7th International Conference on Intelligent Computing and Control Systems (ICICCS-2023)
IEEE Xplore Part Number: CFP23K74-ART; ISBN: 979-8-3503-9725-3

979-8-3503-9725-3/23/$31.00 ©2023 IEEE 154
Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on June 13,2023 at 22:24:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Results from applied tree-based machine learning classifiers.

Fig. 8. Feature importance from each of the classifiers.

Fig. 9. ExtraTreesRegressor model explainability using SHAP.

RMSE, they did not do equally well on cross validation and
testing data. This suggests that these models might have
been overfitted during training. The ExtraTreeRegressor
classifier shows R2 score of 93% during 5-fold
cross-validation. The testing dataset also exhibits a relatively
high R2 and adjusted R2 score of 89% accompanied by the
lowest testing MAE score of 3.7, MSE of 251 and RMSE of
15.8 among the applied algorithms. Since this classifier
demonstrates the lowest error, as well as the highest R2 and

Fig. 10. CatBoostRegressor model explainability using SHAP.

adjusted R2 values during cross-validation, and testing, the
ExtraTreeRegressor model is considered the most efficient
model among the other models utilized in this study. The
next efficient model is the CatBoostRegressor model with
test dataset R2 and adjusted R2 values of 86%, and 85%, a
cross-validation R2 score of 92%, and lowes MAE value
among the chosen models for this study. The RandomForest
model also performed well in cross-validation and testing
datasets. However, the AdaboostRegressor model performed

Proceedings of the 7th International Conference on Intelligent Computing and Control Systems (ICICCS-2023)
IEEE Xplore Part Number: CFP23K74-ART; ISBN: 979-8-3503-9725-3

979-8-3503-9725-3/23/$31.00 ©2023 IEEE 155
Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on June 13,2023 at 22:24:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 11. RandomForestRegressor model explainability using SHAP.

relatively poor compared to the other selected classifiers,
with a cross-validation R2 score of approximately 79%, and
slightly higher MAE, MSE and RMSE values than the other
classifiers. Best on this analysis, the best performing model
was the ExtraTreeRegressor followed by the
CatBoostRegressor, and RandomForestRegressor.

As the next step, we recorded the feature importance for
each of the applied algorithms as illustrated in Fig. 8. The
top 5 important features are represented by the green color
for each algorithms, while the minimum 3 performers are
shown in red. Defect density emerged as the strongest
feature in all 6 classifiers, followed by functional size. For
instance, in the ExtraTreeRegressor model, the defect density
feature had a coefficient of 63% while the coefficient for the
1st language was only 0.0047. This indicates that, for this
SDP model, the 1st language feature did not provide a
significant role ine the prediction. This field scored the
lowest among all models, except for AdaBoostRegressor, but
it was not among the top 5 predictors for
AdaBoostRegressor either. Functional size was the second
strongest predictor among all these classifiers. It seems that
programming language for the software project did not have
a significant impact in any of these predictions. On the other
hand, ”normalized work effort” contributed in all these
models, although this feature had less importance compared
to defect density and functional size.

To verify if these features can be explained using model
agnostic approach, we applied SHAP on the top 3 models.
The results are shown in Fig. 9, Fig. 10, and in Fig. 11 for
the ExtraTreeRegressor, CatBoostRegressor and
RandomForestRegressor models respectively. All these
models aligned with the top three predictors in the same
order which are defect density, functional size, and
normalized work effort. However, for the 4th predictor, each
model selected a different predictor. ExtraTreeREgressor
identified Relative Size as the next important predictor,
Catboost Regressor highlighted the counting approach, and
RandomForestRegressor included Industry Sector. It appears

that the programming language did not significantly
contribute to the prediction of this SDP model.

V. ANALYSIS AND DISCUSSION

This study employed regression models including Extra
Randomized Tree, CatBoost, RandomForest, XGBoost,
AdaBoost, and GradientBoosting algorithms to predict the
number of defects. The findings revealed that ExtaTree,
CatBoost, and RandomForest demonstrated better
performance in this regard. The reliability on these models
was achieved as they exhibited comparatively lower MAE,
MSE, RMSE values in training and testing dataset, along
with comparatively higher R2 and adjusted R2 scores. The
application of SHAP models provided reliable explanations
of the features, and the top three models show consistency in
their top three predictors. This contributes towards
explainable SDP models. While SHAP has been used in
recent SDP studies [44], to the best of our knowledge, direct
application of SHAP models in cross-company project
datasets for model explanations has not been widely
explored.

VI. THREATS TO VALIDITY

This research was conducted on the ISBSG dataset.
However, many of the records had to be removed due to
missing values. Although the analysis was performed on a
significant number of records, it is worth noting that adding
the missing records could potentially alter the findings if
information were readily available.

VII. CONCLUSION AND FUTURE WORK

This study utilized six supervised tree-based ML
algorithms for developing SDP models using cross-company
project information from the ISBSG dataset. By employing
regression models, several findings were derived from the
selected attributes based on software size, work effort, defect
density, development type, organization type, and primary
programming language etc. This study reaffirmed the
promising value of regression ML in SDP predictions.
Furthermore, the feature importance of the selected attributes
was observed, and correlation between the predictors and the
number of defects were identified. Finally, the SDP models
were explainable.

Future studies could adopt a more targeted approach by
categorizing the dataset based on programming language,
development type, and other factors to obtain more specific
outcome in addition to this generic model presented here.
Additionally, the selected attributes can be applied to other
open-source projects to increase the reliability of the
explained predictors after being validated by explainable
machine learning models.

We would like to thank ISBSG for providing us with the
data subscription. Also, we would like to acknowledge the
support by Mrs. Mary Pierce, Dean of Faculty of Business,

ACKNOWLEDGEMENT

Proceedings of the 7th International Conference on Intelligent Computing and Control Systems (ICICCS-2023)
IEEE Xplore Part Number: CFP23K74-ART; ISBN: 979-8-3503-9725-3

979-8-3503-9725-3/23/$31.00 ©2023 IEEE 156
Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on June 13,2023 at 22:24:21 UTC from IEEE Xplore. Restrictions apply.

Information Technology and Part-time Studies, Fanshawe
College and Dr. Dev Sainani, Associate Dean of School of
Information Technology of Fanshawe College, London,
Ontario for supporting this research work.

REFERENCES

[1] T. Elfriede and B. Garrett, Implementing Automated Software Testing
How to Save Time and Lower Costs While Raising Quality, Addison-
Wesley, 2009.

[2] M. Shepperd, Q. Song, Z. Sun, and C. Mair, ”Data quality: Some
comments on the NASA software defect datasets”, in IEEE Trans. Softw.
Eng., vol. 39, no. 9, Sep. 2013, pp. 1208–1215.

[3] S. Aleem, L. F. Capretz, and F. Ahmed, ”Benchmarking machine
learning techniques for software defect detection”, in Int. J. Softw. Eng.
Appl., vol. 6, May. 2015, pp. 11-23.

[4] A.O. Balogun, S. Basri, L.F. Capretz, S. Mahamad, A.A. Imam, M.A.
Almomani, V.E. Adeyemo, A.K. Alazzawi, A.O. Bajeh, G. Kumar,
“Software defect prediction using wrapper feature selection based on
dynamic re-ranking strategy”, in J. Symmetry, Vol.13, Issue 11, 2021,
pp. 1-23, Paper 2166,

[5] J. Bai, J. Jia, L.F. Capretz, “A three-stage transfer learning framework for
multi-source cross-project software defect prediction”, in J. Inf. Softw.
Technol., Vol. 150, 16 pages. 2022.

[6] A.O. Balogun, S. Basri, S. Mahamad, L.F. Capretz, A.A. Imam, M.A.
Almomani, V.E. Adeyemo, G. Kumar, “A novel rank aggregation-
based hybrid multifilter wrapper selection method in software defect
prediction”, in J. Computational Intelligence and Neuroscience, Vol.
2021, 2021, pp. 1-19, Paper 5069016.

[7] T. Menzies, J. DiStefano, A. Orrego, and R. Chapman, ”Assessing
predictors of software defects”, in Proc. Workshop Predictive Softw.
Models, 2004.

[8] C. Shan, B. Chen, C. Hu, J. Xue, and N. Li, ”Software defect prediction
model based on LLE and SVM”, in Proc. Commun. Secur. Conf. (CSC
’14), 2014, pp. 1–5.

[9] A. Rahim, Z. Hayat, M. Abbas, A. Rahim and M. A. Rahim,
”Software Defect Prediction with Naı̈ve Bayes Classifier”, in
2021 Intl. Bhurban conf. on Applied Sciences and Technologies
(IBCAST), Islamabad, Pakistan, 2021, pp. 293-297, doi:
10.1109/IBCAST51254.2021.9393250.

[10] M. A. Khan, N. S. Elmitwally, S. Abbas, S. Aftab, M. Ahmad, M.
Fayaz, and F. Khan, ”Software defect prediction using Artificial Neural
Networks: A systematic literature review”, in J. Sci. Program., vol. 2022,
May. 2022, pp. 1–10,. ”

[11] P. Deep Singh and A. Chug, “Software defect prediction analysis using
machine learning algorithms,” in Proc. 7th Int. Conf. Cloud Comput.,
in J. Data Sci. Eng. (Confluence), Jan. 2017, pp. 775–781.” ”

[12] Y. N. Soe, P. I. Santosa, and R. Hartanto, “Software defect prediction
using random forest algorithm,” in Proc. 12th South East Asian Tech.
Univ. Consortium (SEATUC), Mar. 2018, pp. 1–5.” ”

[13] Z. Xu, J. Liu, X. Luo, Z. Yang, Y. Zhang, P. Yuan, Y. Tang, and T.
Zhang, ”Software defect prediction based on kernel PCA and weighted
extreme learning machine”, in Inf. Softw. Technol., vol. 106, Feb. 2019,
pp. 182–200.”

[14] W. Wu, C. Feng, H. Ren, X. Han, and X. Tong, ”Research on software
defect prediction system based on deep learning”, in Fifth Intl. Conf.
Mechatronics and Comput. Technol. Eng. (MCTE 2022), Chongqing,
China, 2022.

[15] A. Ho, N. Nhat Hai, and B. Thi-Mai-Anh, ”Combining deep learning
and kernel PCA for software defect prediction”, in Proc. 11th Intl. Symp.
Inf. and Commun. Tech., 2022, pp. 360-367.

[16] N. Massoud and P. Kumar Jain, ”Software defect prediction using
dimensionality reduction and deep learning”, in Third Intl. conf. on
Intelligent Commun. Technol. and Virtual Mobile Networks (ICICV),
2021, pp. 884-893.

[17] H. Issam, M. Alshayeb, and L. Ghouti, ”Software defect prediction
using ensemble learning on selected features”, in Info. and Softw.
Technologies, vol. 58, 2015, pp. 388–402.

[18] M. W. Thant and N. T. T. Aung, ”Software Defect Prediction using
Hybrid Approach”, in 2019 Intl. conf. on Advanced Information
Technologies (ICAIT), Yangon, Myanmar, 2019.

[19] M. Ali and S. Awais Mian, ”Improving Recall of software
defect prediction models using association mining”, Knowledge-Based
Systems, vol. 90, 2015, pp. 1–13, .

[20] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, ”The impact
of using regression models to build defect classifiers”, arXiv [cs.SE],
Feb. 12, 2022.

[21] E. A. Felix and S. P. Lee, ”Integrated approach to software defect
prediction”,in IEEE Access, vol. 5, 2017, pp. 21524–21547.

[22] B. Gezici and A. K. Tarhan, ”Explainable AI for Software Defect
Prediction with Gradient Boosting Classifier,” in 7th Intl. Conf. Comput.
Sci. and Eng. (UBMK), Diyarbakir, Turkey, 2022, pp. 1-6, doi:
10.1109/UBMK55850.2022.9919490.

[23] M. Almakadmeh and A. Abran, ”The ISBSG software project repository
An analysis from Six Sigma measurement perspective for software
defect estimation”, in J. Soft. Eng. and Appl., vol. 10, no. 8, 2017,
pp. 693–720.

[24] S. Fadi and W. Al-Manai, ”Toward An Empirical Study to investigate
the size-defect Relationship Using ISBSG Repository”, in Proc. Intl.
Conf. on Intelligent Information Processing, Security and Advanced
Communication, pp. 1-5, 2015

[25] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, ”An investigation on
the feasibility of cross-project defect prediction”, in J. Automated Soft.
Eng., vol. 19, no. 2, Jun. 2012, pp. 167–199.

[26] Y. Shao, J. Zhao, X. Wang, W. Wu, and J. Fang, ”Research on Cross-
Company Defect Prediction Method to Improve Software Security”, in
J. Secur. and Commun. Netw., vol. 2021, 2021, pp. 1–19.

[27] J. Shin, R. Aleithan, J. Nam, J. Wang, and S. Wang, ”Explainable
software defect prediction: Are we there yet?”, arXiv preprint
arXiv:2111. 10901, 2021. ”

[28] The ISBSG Development & Enhancement project data , ISBSG, R 21,
Sep. 2021, http://www.isbsg.org

[29] ISBSG D & E - Release Demographics Sept 2021 R2, ISBSG, 2021.
[30] Guidelines for use of the ISBSG data, ISBSG, 2021
[31] Field Descriptions ISBSG D&E Repository, ISBSG, Release 2021.
[32] Pedregosa et al., ”Scikit-learn: Machine learning in Python”, in J.

Machine Learning Res., vol. 12, 2011, pp. 2825–2830.
[33] H. Aljamaan and A. Alazba, ”Software Defect Prediction Using Tree-

Based Ensembles”, in Proc. 16th ACM Intl. Conf. on Predictive Models
and Data Analytics Soft. Eng, Virtual, USA, 2020, pp. 1–10.

[34] L. Breiman, ”Random forests”, in Machine learning, vol. 45, 2001 pp.
5–32.

[35] D. P. Bibitemb Solomatine and D. L. Shrestha, ”AdaBoost. RT: a
boosting algorithm for regression problems”, in Proc. IEEE Intl. Joint
Conf. on Neural Netw., vol. 2, IEEE, 2004, vol. 2, pp. 1163–1168.. ”

[36] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction
using ensemble learning on selected features”, in Inf. Technol., vol. 58,
pp. 388–402, Feb. 2015, doi: 10.1016/j.infsof.2014.07.005.”

[37] R. Marée, L. Wehenkel, and P. Geurts, ”Extremely randomized trees and
random subwindows for image classification, annotation, and retrieval”,
in Decision Forests for Computer Vision and Medical Image Analysis,
London: Springer London, 2013, pp. 125–141.

[38] T. Chen and C. Guestrin, ”Xgboost: A scalable tree boosting system”,
in Proceedings 22nd acm sigkdd Intl. conf. on Knowl. discovery and
data mining, 2016, pp. 785–794.

[39] G. Esteves, E. Figueiredo, A. Veloso, M. Viggiato, and N. Ziviani,
”Understanding machine learning software defect predictions”, in J.
Autom. Softw. Eng., vol. 27, no. 3–4, pp. 369–392, Dec. 2020.

[40] F. Yang, Y. Huang, H. Xu, P. Xiao, and W. Zheng, ”Fine-Grained
Software Defect Prediction Based on the Method-Call Sequence”,
Computational Intelligence and Neuroscience, vol. 2022, 2022.

[41] A. Botchkarev, ”A new typology design of performance metrics
to measure errors in machine learning regression algorithms”, in
Interdiscip. J. Inf. Knowl. Manag., vol. 14, 2019, pp. 045–076,.

[42] X. Tan, X. Peng, S. Pan, and W. Zhao, ”Assessing software quality by
program clustering and defect prediction”, in 2011 18th Working conf.
on Reverse Engineering, Limerick, Ireland, 2011.

[43] F. Coelho, A. P. Braga, and M. Verleysen, ”Multi-Objective Semi-
Supervised Feature Selection and Model Selection Based on Pearson’s
Correlation Coefficient,” Lecture Notes in Computer Science, vol. 6419,
no. 11, pp. 509-516, 2010.

[44] B. Gezici and A. K. Tarhan, ”Explainable AI for Software Defect
Prediction with Gradient Boosting Classifier”, in 2022 7th Intl. conf.
on Computer Science and Engineering (UBMK), 2022, pp. 1–6.

Proceedings of the 7th International Conference on Intelligent Computing and Control Systems (ICICCS-2023)
IEEE Xplore Part Number: CFP23K74-ART; ISBN: 979-8-3503-9725-3

979-8-3503-9725-3/23/$31.00 ©2023 IEEE 157
Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on June 13,2023 at 22:24:21 UTC from IEEE Xplore. Restrictions apply.

