
© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

1

Preview of ICEAA SCEBoK 1.0:

Software Cost Estimating Body of

Knowledge

Carol Dekkers, Lead Author

Quality Plus Technologies, inc.

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

WHO AM I?

Carol Dekkers, PMP, CFPS (Fellow), P.Eng.

Lead author of ICEAA SCEBoK
IFPUG Past President

ISO project editor
Founder, Quality Plus Technologies, Inc.

Consultant. Author. Speaker. Instructor

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

ICEAA Software Cost Estimation Body

of Knowledge: SCEBoK Outline

LESSON 0:
INTRODUCTION TO

CURRICULUM

LESSON 1:
IMPORTANCE AND
MOTIVATION FOR

SCEBOK

LESSON 2:
SOFTWARE

DEVELOPMENT
PARADIGMS

LESSON 3: SCEBOK
FIVE-STEP

ESTIMATING
PROCESS

LESSON 4:
ESTIMATING

CUSTOM
SOFTWARE

DEVELOPMENT

LESSON 5:
SOFTWARE

SUSTAINMENT

LESSON 6:
ESTIMATING
PROCURED
SOFTWARE
SOLUTIONS

LESSON X:
SOFTWARE SIZE

LESSON Y:
PRODUCTIVITY

LESSON Z:
COMMERCIAL

ESTIMATING MODELS

3

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Preview of

ICEAA SCEBoK 1.0

• Special thank you to the SCEBoK Senior Advisors and
Leadership Team
– Kevin Cincotta, ICEAA Certification and MITRE

– Rick Collins, ICEAA President and Technomics

– Dave Brown, Technomics

– Wilson Rosa, DHS CAD

– Christian Smart, ICEAA Board and Galorath

– Megan Jones, ICEAA Executive Director

– Eric van der Vliet, Nesma and CGI

– Harold von Heeringen, Nesma and Metri

• ICEAA SCEBoK Review Group (ISRG)

4

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

SCEBoK’s

Global Audience
(SCEBoK Terms of Reference, May 2020)

SCEBoK audiences consist of cost estimators and/or software engineers

from various industries, including (and not limited to):

– Original Equipment Manufacturers (OEMs)

– Prime contractors & subcontractors

• E.g., government(s), defense, intelligence and civil agency

projects

– Commercial organizations & IT departments

• E.g., banks, insurance companies, etc.

– Consulting firms

• E.g., consultants to OEMs, commercial or government

organizations

– Government and quasi-government organizations (e.g., Federally

Funded R&D Centers)

– Academic institutions

5

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

SCEBoK

Inclusions/Exclusions
(SCEBoK Terms of Reference, May 2020)

SCEBoK does:

• Provide the user, whose background and expertise are intended

to be based in cost estimating and analysis, with an

understanding of software estimating that will complement and

enhance their cost estimates and analyses.

SCEBoK does NOT:

• Endorse any particular method of software sizing as superior or

inferior to another;

• Endorse any particular software development methodology,

software estimating methodology or vendor;

• Prescribe the essential considerations in software cost estimating

– however, it DOES provide guidance.

6

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Pre-requisite Knowledge:

ICEAA CEBoK Modules

• Basic knowledge of cost

estimating content as highlighted

• Available to ICEAA members

https://wikidev.iceaaonline.com/

wiki/Main_Page

7

https://wikidev.iceaaonline.com/wiki/Main_Page
https://wikidev.iceaaonline.com/wiki/Main_Page

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

• Software presents a number of unique challenges for the
estimator to get a Realistic / Close estimate

• Understanding software cost estimation is critical because
software is increasingly part of almost every program
estimate

• Paradigms, software growth, packaged solutions, cost
drivers, and correct usage of historical data are pre-requisites
to realistic estimates

• Status quo is not good enough  need formal estimating
process, historical data, and repeatable practice

Why ICEAA SCEBoK ?

8

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Lesson 1: Importance and

Motivation for Software Cost

Estimating

9

Lesson outline:
1. The importance of software cost and schedule estimation

2. The impact of software estimation on project outcomes

3. Setting the stage for the remainder of the SCEBoK lessons:

– Develop an understanding of what are (and how to create)

credible and defensible software estimates

– Define common terminology useful to a software cost estimator

– Introduce the software life cycle and the fit with software

development and acquisition decision making (whether

contracted or internal)

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Lesson 2: Software

Development Paradigms

Lesson outline:
• Terminology and definitions of what is software development

• Introduction to software development paradigms:

– Comparison and contrast of paradigms in use today

• Cost considerations of software development paradigms:

– What are major considerations by paradigm and how to

differentiate the software cost estimating implications of each

software development paradigm

13

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Differentiator Agile methods Predictive methods

Focus of work Change-driven based on product value:

fixed time and cost, estimated scope

Project plan: fixed scope, estimated cost and

duration

Frequency of

deployment

Iterative, early & frequent (2-3 weeks) One big release (end of project)

Quality Continuous inspection and testing during

every iteration (impact on rework)

Testing phase inspects out poor quality at the end

(impact on rework)

Customer involvement Co-located, daily review via product owner Interaction with customers at beginning and end

Risk of changing

requirements

Minimizes risk by engaging customer to

prioritize requirements to be developed first

Fixed requirements with high risk due to

incomplete or incorrect requirements or change

Development teams Self-organized, may split effort between

Development and Operations

Hierarchical or matrix, fully dedicated to

development

Operations and Security

Considerations

With DevSecOps, continuous deployment,

continuous testing during development.

Can reduce integration costs

Little to no consideration of operations or security

during development. Separate teams. Operations

and security concerns handled post-development

Prototypical contract

type(s)

Time and materials (T&M) or cost-

reimbursable

Firm fixed price (FFP) or fixed price with

incentives

16

Adaptive versus Predictive

paradigms: overview

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Adapted from https://www.process.st/waterfall-vs-

agile/

Topic Agile Predictive / waterfall Hybrid-agile (Partly predictive/partly agile)

Fixed Cost & schedule Scope (requirements) Initial high-level scope fixed, but is flexible to

prioritization and change during development

Estimated Scope (features) Cost & schedule Cost & schedule initially estimated, but becomes

fixed during development

Driver Change-driven Plan-driven Hybrid

Development

risks1

Cost & schedule mostly fixed. Delivered

size may fall short

Scope fixed  cost & schedule

overruns

Cost & schedule mostly fixed during build.

Delivered scope may fall short

Adaptive versus Predictive

paradigms: cost considerations1

17

https://www.process.st/waterfall-vs-agile/
https://www.process.st/waterfall-vs-agile/
https://www.process.st/waterfall-vs-agile/
https://www.process.st/waterfall-vs-agile/
https://www.process.st/waterfall-vs-agile/

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Lesson 3: SCEBoK Five-Step

Estimating Process

Lesson outline:

• Identify and discuss types of estimates for custom
software development efforts

• Present the SCEBoK 5-step software estimating
process:

1. Develop the scope of the estimate;

2. Collect and analyze historical data;

3. Create the software estimate;

4. Adjust the estimate for risk and uncertainty; and

5. Document and present the estimate

18

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Lesson outline:
0. High-level review:

– Software Size and Productivity
– SCEBoK Five-Step Estimating Process

1. Three ways to create the software estimate using Estimating Techniques:
2. Overview of estimating approaches
3. Creating a software development estimate based on SCEBoK Five-step

Estimating Process and four estimating approaches
4. Schedule estimate
5. Time-phasing the estimate
6. Cross-checking the estimate
7. Outside of the Five-step Estimating Process: Reviewing Estimates prepared by

others

Lesson 4: Estimating Custom

Software Development

23

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Three Ways to Create a

Software (Development) Estimate

Way Process Associated approach Pre-requisites for Selecting

1st • Estimate size

• Estimate effort based on size (with

productivity implied)

• Estimate schedule and cost based on

effort

1. Parametric (Derive

CER)

2. Parametric

(Published CER)

• Historical data

• Software size estimate available

• Known criteria

2nd • Estimate size, productivity

• Estimate effort based on size and

productivity

• Estimate schedule and cost based on

effort

3. Analogy

(Productivity-based)

• Analogy available

• Software size estimate available

• Known criteria

3rd • Estimate effort, schedule and cost

based on expert opinion

4. Wideband Delphi

Expert Opinion

• Lack of historical data

• May not know software size

Cross-

check1

• Use additional approaches (above) or

published Rules-of-Thumb

• Used to support primary approach

5. Commercial

Estimating Models

6. Rules of thumb

• Known criteria (see Lesson Z)

• Rough order of magnitude

1. Cross-check is not another approach, but rather is a means

to validate the realism of an estimate created in one of other

ways above. Use a second approach, a commercial software

estimating model (Lesson Z) or published Rules-of-Thumb to

validate estimate realism

25

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Lesson 5: Software Sustainment

Lesson outline:
1. Definitions and Terminology: Software Sustainment vs Software

Maintenance
a. Software Sustainment (SWS)

b. SWS Cost Element Structure (CES)

c. Software Changes: Software Maintenance (SWMX), Enhancements, and Cyber Security

2. The Importance of Software Sustainment
a. Data Normalization

b. Drawing the Line Between Development (Investment) and Sustainment

c. Reasons for the High Costs of Software Sustainment

3. Cost Estimating Techniques
4. SWS Risk/Uncertainty Considerations
5. Implications of Dev(Sec)Ops on Structure and Time-Phasing of Estimate
6. A Note About Obsolescence
7. Quick Reference/Rules of Thumb
8. Lesson Summary

27

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Software Sustainment (SWS)

Cost Element Structure (CES)

Software
Changes

Software
Maintenance

(SWMX)

 Enhancements

Cybersecurity

Recurring
End-user
Licenses

(Lesson 6)

Annual End-user
software licenses

 Annual
Maintenance and

Service Level
Agreements

Other SWS cost
elements
-- Project

Management (PM)

-- Certification and
Accreditation (C&A)

-- System Facilities

-- Sustaining
Engineering

-- Field Software
Engineering

-- Other Operations

Adapted from the SWS WBS v5.0 from the New Army Software

Sustainment Cost Estimating Results DASA‐CE by Cheryl Jones,

James Doswell, et al, presented at ICEAA May 2019

Software Sustainment (SWS)

Cost Element Structure (CES)1

28

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Cost Estimating Methods for

Sustainment and Maintenance

Cost Method2 Definition Associated SWS CES

Element(s)

1. Cost Factor-based Approaches that estimate software sustainment cost as

a percentage, or factor, of some other (estimated) cost.

Overall SWS

2. Size-based

Productivity, and

Annual Change

Traffic (ACT)-based

Approaches that estimate software product changes

costs based on delivered software size and productivity

or on the annual amount of code touched or changed

Typically Software

Changes

3. Parametric CER Approaches that allow the software cost estimator to

create their own CER based on Total Software Changes

(TSC) or other measures

Typically Software

Changes

4. Commercial

Estimating Models:

(See Lesson Z)

Commercial Estimating Models give estimated hours

associated with each type of SWMX based on the inputs

described previously1 (e.g., size, complexity, capability)

SWS (Life Cycle Costs) or

SWMX

5. Past Funding-based Approaches that rely on FTE historical budget data to

estimate software sustainment as steady state level-of-

effort (LOE) task

Overall SWS

1. In Lesson 4: Creating the Software Estimate for Software Development

2. Note that a more-detailed estimating method would take multiple values into account, such as actual delivered size, complexity, etc.

29

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Lesson 6: Procured

Software Solutions

Lesson outline:
A. Review: Drawing the Lines between Investment and Sustainment:

– SCEBoK Software Delivery Continuum, SCEBoK CES

B. Introduction to procured software solutions:

– What is COTS1 software?

C. Identify major types of procured software solutions, and cost drivers and estimating

approach(es) for each: purchase
1. COTS Purchase

2. Software as a Service (SaaS))

3. Service-Oriented Architecture (SOA)

4. Enterprise Resource Planning (ERP)

5. Enterprise Data Warehouse (EDW), Data Mart, Operational Data Store (ODS)

6. Hybrid solution

D. Consideration of Cost Growth in Procured Software Solutions

E. Software sustainment considerations specific to procured software solutions

F. Lesson Summary

30

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Estimating the

Investment

Stage of

Software

Custom

software

development

?

Procure

or Lease?

2. SaaS
Lease

Procure 1. COTS

Purchase

Can only do a Rough

Order of Magnitude

(ROM) estimate

Three major

options: COTS

products glued

together,

Enterprise

solution, or Data

Warehouse??

Multiple COTS Products

“glued” together

4. ERP

3. SOA

Enterprise Solution

Do you

know

software

architecture

?

Lesson 4:

Custom

Software

Development

No

Yes

Identify the Type of

Procured Software Solution

No

Yes

5. EDW Enterprise Data Warehouse (EDW)

0. Custom

Software

Development

Lesson 6:

Estimating

Procured Solutions

Standalone

COTS

Package(s)

Yes

No

6. Hybrid

31

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Solution Known as Less

on

SCEBoK estimates the: Cost Drivers Estimating

approaches

0 Custom

software:

design &

build the

solution

Custom

software

development

4 • Effort for software

development (software

requirements analysis,

design, build, test, install

software)  cost

• Schedule (duration)

• Software size (FP, ESLOC,

other)

• S/W Complexity

• Dev team Capability

• Parametric CER

(Custom or

Published)

• Analogy

• Expert Opinion

1 Single COTS COTS purchase 6 • Procurement cost • Vendor quotes (# of users,

sites)

• Build-up of

quotes

2 Lease the

functionality

Software as a

Service (SaaS)

6 • Leasing cost by duration, or

number of users or sites

• Vendor quotes (# of users,

months)

• Vendor quotes

3 Multiple

COTS

Service-Oriented

architecture

(SOA)

6 • Effort to develop glue

code cost

• Schedule (duration)

• # of interfaces that need to

be built

• CER based on

interfaces

4 Enterprise

Solution

(Oracle, SAP)

Enterprise

Resource

Planning (ERP)

6 • Effort for integration

(configure /tailor /customize

RICE(FW) objects  cost

• Schedule (duration)

• RICE(FW) objects • CER based on

RICE-FW

objects

5 Executive

Info system

Enterprise Data

Warehouse

(EDW), Data

Mart, ODS

6 • Effort for Extract Transform

Load routines (ETL) from

source systems

• # of migrated tables • CER based on

migrated

tables

6 Hybrids Hybrid solution 4/6 • Use combination of

approaches

• See above • Combination

1. RICE = Reports, Interfaces,

Conversions, Extensions, (Forms and

Workflows) objects in ERP software

Estimating approaches for

Procured Software Solutions

32

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Lesson X: Software Size

Lesson Outline:
• Software size as a cost driver for software development

• Dimensions of software size, methods, and units of measure:
1. Physical size

2. Functional size and Extensions to functional size for non-functional software
requirements

3. Relative effort measures (agile software development)

4. RICE(FW)1 objects (for Enterprise Resource Planning procured software solutions)

• Software size considerations
– Choosing a Sizing Approach

– Conversions between size units and Rules of Thumb

– Questions to Ask

• Software sizing tools:
– Commercially and freely available Source Lines of Code (SLOC) counters: (University of

Southern California Unified Code Counter (UCC))

– Function Point estimating tools: CADENCE, ScopeMaster

33

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

1. Physical size: Source Lines of Code (SLOC)

2. Functional Size

A. International Function Point Users Group (IFPUG) Function Points (ISO/IEC 20926) **

B. Nesma Function Points (ISO/IEC Standard ISO/IEC 24750) **

C. Common Software Measurement International Consortium (COSMIC) Function Points (ISO/IEC

Standard) **

D. Simple Function points

E. Object Points

F. Use Case Points

G. Requirements (Software Engineering Institute)

Non-functional extensions to functional size

H. IFPUG Value Adjustment Factor (VAF)

I. IFPUG Software Non-functional Assessment Process (SNAP) points

J. Use Case Points Technical Factor (TF) and Environmental Factor (EF)

3. Relative effort: (Agile development)

Three methods for estimating Story Points:

A. Planning poker

B. T-shirt sizing

C. Time buckets

4. RICE(FW) – Reports, Interfaces, Conversions, Extensions, (Forms, Workflows) – for Procured software solutions

** Conformant with ISO/IEC 14143-1 Functional Size Measurement Part 1: Definition of concepts

Software Size Dimensions

and Units of Measure

35

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Lesson Y: Productivity

Lesson Outline:

1. Productivity as a concept

2. Define Productivity in the context of software

development cost estimating

3. Ways of measuring productivity; specify your

measurement (unless otherwise specified)

4. Productivity as an input vs. output (can cross-

check)

5. Relationship between size and productivity

36

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

The graphic below illustrates how productivity factors can be defined over differing portions of

the overall development process

– Design, Code, Test, Integration (DCTI) factors cover the “core” parts of the process; other activities

must be estimated separately or significant omissions will occur in the estimate

– Software “end to end” productivities attempt to cover all “software-specific” activities; higher level

systems engineering activities must be estimated separately where relevant

Stake-
holder
Req.

System
Req.

System
Arch.
Design

SW
Req.

SW Arch.
Design

SW
Detailed
Design

SW
Constr
uction

SW
Integrat
ion

SW
Qual.
Testing

System
Integrat
ion

System
Qualific
ation

SW
Installat
ion

SW
Accepta
nce

Software Support & Reuse

Organization Enabling and Project Processes

Work content covered by the productivity factor must be well-defined and well-understood!

DCTI

SW Development “end to end”

System Development “end to end”1

Ways of Measuring Productivity:

Considerations

37

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Definition (of Productivity) Typical Estimating Technique Source

1
1/ (A* Size(E-1)) in Custom CER where

effort = A*SizeE

Custom Cost Estimating

Relationship (CER)

Defense Acquisition University

(DAU)

2
A general term for all of the non-size

cost drivers (in COCOMO II)

Generalized CER such as COCOMO

II
COCOMO II manual

3
A general term for all of the non-size

cost drivers (general)
Parametric

Defined by parametric model

developers (e.g., commercial

estimating model vendors)

4
Interchangeably with COCOMO II

Effort Multipliers (EM)
COCOMO II equation

Non-specific (as in “productivity

and cost drivers”1)

5 "A" in COCOMO II equation COCOMO II equation
COCOMO II manual (as

"productivity constant").

6 Size / effort Analogy
Stutzke, Jones, etc., intuitive

output / input

7 Effort / size Analogy

ISBSG Project Delivery Rate

(PDR); Any source citing Effort

= Size * Productivity

1. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

366.221&rep=rep1&type=pdf

Ways of Measuring

Productivity

More in-depth Productivity

Concepts (Creative Commons):

Rethinking Productivity in Software

Engineering (2019)
38

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.221&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.221&rep=rep1&type=pdf

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Lesson Z: Commercial

Estimating Models

Lesson Outline:

1. Introduction to Commercial Estimating Models

2. Overview of four models:

1. COCOMO II Web Tool

2. Galorath Inc: SEER-SEM ®

3. PRICE Systems: TruePlanning for Software®

4. Quantitative Software Management (QSM): SLIM

Estimate®

39

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

SCEBoK: Using Data to Create Realistic

Estimates (and Better Results)

© Carol Dekkers/Quality Plus Technologies, Inc. 2020

Cost estimating best practices CAN BE TAILORED to software:
• Estimating Maturity Model (formal methods)

• Cone of uncertainty

• Foundation of solid historical data

• Data analysis and normalization

• Planning for cost and schedule growth

• Cross checks, sensitivity analysis, risk and uncertainty

40

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

A Final Note…

‘The software industry has the worst metrics and

measurement practices of any industry in human history’
-- Capers Jones (2018)1

“SCEBoK will help create realistic data-based estimates.
Over time, this leads to more, successful projects, and

(hopefully) better metrics.” -- Carol Dekkers, March 2021

1. Source: Capers Jones, Quantifying Software – Global and Industry Perspectives, 2018

41

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

How can YOU support SCEBoK?

42

• Join ICEAA, promote SCEBoK

• Participate in ICEAA training

• Volunteer:

• Write certification questions

• Provide content/review materials

• Teach a lesson at ICEAA

Contact: Kevin Cincotta, Carol Dekkers,

Megan Jones, ICEAA Board members

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Carol Dekkers

813-816-1329

caroldekkers@gmail.com

www.qualityplustech.com

SCEBoK:

www.iceaaonline.com

43

mailto:caroldekkers@gmail.com
http://www.qualityplustech.com/

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA 44

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

SCEBoK Objectives (3 of 3)
(SCEBoK Terms of Reference, May 2020)

5. SCEBoK will be a how-to for reviewing another party’s

• Estimate of software development effort, cost and schedule

• Estimate of software maintenance cost and schedule

Note: The ability to prepare an estimate (i.e., point 4) is necessary, but not sufficient to

critically review an estimate; therefore, content specific to reviewing is required

6. SCEBoK will be commercial and non-commercial software cost and schedule estimating tool

agnostic

7. SCEBoK will be software sizing technique agnostic

47

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Status Quo: Standish Group

CHAOS reports (since 1996)

FAILED: Not delivered or cancelled

CHALLENGED: Delivered, but…

late, and/or over-budget, and/or missing features

SUCCESS: On-time, on-budget, with all features

Standish Group CHAOS Report defines project
outcomes:

48

© Carol Dekkers/ICEAA

Software-intensive program1
Investment:

• Program/project management

• Systems engineering

• BPR/ Change management

• System Development

• System Procurement

• Hardware (make and/or buy)

• Software (buy)

• System level integration & test

• System

deployment/implementation

Operations & support (O&S)2

• Help desk/service desk support

• Technology refresh/upgrade

• System maintenance

SCEBoK
Lessons 2,4

SCEBoK
Lesson 5

SCEBoK
Lesson 6

Software Development Paradigms

Pertain to Software Development

1. Standard IT LCC WBS V5 from US Department of Homeland Security

2. O&S contains continuation of many investment categories + those new

ones listed here… See definitions in notes

3. Software obsolescence is of growing concern in O&S, see lesson 6 for

research and further information.

Software life cycle (example)
• Investment

• Plan (sourcing, business case, governance)
• Develop and/or procure

• Software development
• Requirements  implementation

• Software procurement

• System Integration
• Deployment

• Operations & Support (O&S) Software sustainment

 Help desk, licenses, 3 hosting, etc...
• Software change product

• End of life

49

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Software-specific

Cone of Uncertainty

What is Uncertain?

• Software Size

• Software Complexity

• Team capability

• Schedule constraints

• Team size

• Productivity

• Relationships between:

– Size and effort

– Size and productivity

• Historical data (quality)

Estimates should always be expressed as a range,

not an absolute.

50

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Mapping the SCEBoK five-step

process to the U.S. Government

gold-standard process

SCEBoK Step 2:

Collect and

Analyze Data

SCEBoK Step

3: Create

Software

Estimate

SCEBoK

Step 4:

Conduct

Sensitivity,

Risk, &

Uncertaint

y Analysis

SCEBoK Step 1: Develop Scope &

Approach

SCEBoK Step 5:

Document and Present

Estimate Source: U.S. Government

Accountability Office (GAO) COST

ESTIMATING AND ASSESSMENT

GUIDE: Best Practices for

Developing and Managing

Program Costs (GAO-20-195G),

March, 2020.
51 Backup: GAO Positioning in the US

Federal Government

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Data-based estimates

(DoD CADE, ISBSG, your own data)

• Data analysis is important (data must be similar, relevant, comparable)

• Data normalization is critical (units of measure, scope, who, what, OT)

• Realistic, actuals of effort and schedule data tell a story (CER, SER)

52

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Step 1: Step 2: Step 3: Step 4: Step 5:

a. Purpose &

scope

b. Develop a plan

c. Develop CES

d. Understand

Technical

baseline

e. Document

Ground Rules &

Assumptions

(GR&A)

a. Collect,

b. Analyze, and

c. Normalize

comparable

historical data

a. Select

technique(s)

b. Create point

estimate

c. Perform cross-

checks

a. Conduct

sensitivity

analysis

b. Conduct risk &

uncertainty

CRUA analysis

a. Document the

estimate

b. Present to

stakeholders

c. Update as

needed

SCEBoK Five-step Software

Estimating Process

53

© Carol Dekkers/ICEAA © Carol Dekkers/ICEAA

Reviewing Estimates Prepared by

Others

When reviewing estimates prepared by others, look for answers:

– Are the estimated costs and schedule consistent with demonstrated

accomplishments on other projects?

– Did the estimate follow a structured and documented process for relating

estimates to actual costs and schedules of completed work?

– Do cost and schedule estimates quantify demonstrated organizational

performance in ways that normalize for differences among software products

and projects? (Note: it should not be a simple, unnormalized, lines-of-code per

staff-month extrapolation used as the basis for the estimate)?

– Did extrapolations from past projects account for differences in application

technology and the effects of introduction of new software technology of

processes?

– Did extrapolations from past projects account for observed, long-term trends in

software technology improvement?

54

