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ABSTRACT

Studies in software effort estimation (SEE) have explored the use of
hyper-parameter tuning for machine learning algorithms (MLA) to
improve the accuracy of effort estimates. In other contexts random
search (RS) has shown similar results to grid search, while being
less computationally-expensive. In this paper, we investigate to
what extent the random search hyper-parameter tuning approach
affects the accuracy and stability of support vector regression (SVR)
in SEE. Results were compared to those obtained from ridge re-
gression models and grid search-tuned models. A case study with
four data sets extracted from the ISBSG 2018 repository shows that
random search exhibits similar performance to grid search, ren-
dering it an attractive alternative technique for hyper-parameter
tuning. RS-tuned SVR achieved an increase of 0.227 standardized
accuracy (𝑆𝐴) with respect to default hyper-parameters. In addition,
random search improved prediction stability of SVR models to a
minimum ratio of 0.840. The analysis showed that RS-tuned SVR
attained performance equivalent to GS-tuned SVR. Future work
includes extending this research to cover other hyper-parameter
tuning approaches and machine learning algorithms, as well as
using additional data sets.
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1 INTRODUCTION

The process of estimating the effort required to develop a software
product is known as software effort estimation (SEE). Among these
is support vector regression (SVR), a machine learning algorithm
which has been successfully used for effort estimation of cross-
company (CC) data sets [7, 8]. The effectiveness of SVR can be
attributed to its ability to adapt to different and heterogeneous
chunks of data. Hyper-parameter settings allow SVR to better rep-
resent the characteristics of the data, but inappropriate selection of
values can result in model over- or under-fitting. This could lead to
potentially worse prediction accuracy than default values [19].

Hyper-parameters are sets of values defined before the SEE
model’s construction, and can affect model performance [21, 30].
Appropriate hyper-parameter values can increase the prediction
accuracy of the model, when compared to the default values [35].
To avoid manually tuning hyper-parameters, research in SEE has
studied automated hyper-parameter tuning approaches [21]. A com-
mon characteristic among these studies is the frequent use of grid
search, a method that exhaustively explores the hyper-parameter
value space to identify the best set of values [4]. Yet, grid search
is computationally costly and suffers from the so-called curse of
dimensionality [3]. Random search, on the other hand, is a hyper-
parameter tuning approach that takes and evaluates samples from
a search space. Existing evidence suggests that random search can
provide model performance similar to that of grid search, while
being less computationally costly [3]. Previous studies have evalu-
ated hyper-parameter tuning approaches in other areas of software
engineering [1, 13, 33, 34]. We attempt to extend this work in the
area of software effort estimation, initially with the random search
tuning approach.

In this study, we evaluate the effect of the random search hyper-
parameter tuning approach applied to SVR for software effort es-
timation. To this end, we performed an experimental study that
compares the prediction accuracy and stability of an SVR model
tuned with random search to an SVRmodel built with default hyper-
parameters. Four subsets obtained from the ISBSG 2018 Release 1
data set are used. Additionally, ridge regression models and grid
search-tuned models are used as evaluation benchmarks.

https://doi.org/10.1145/3416508.3417121
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2 RELATED WORK

Several studies have investigated the effect of hyper-parameter
tuning for SEE models. Song et al. [30] performed a study to assess
the impact of hyper-parameter tuning in different machine learning
algorithms (MLA). The authors trained and evaluated four different
MLA using all possible combinations of hyper-parameter values
defined across a range, akin to grid search. The study compared
the best, the worst, and the default settings for hyper-parameter
values.

Dejaeger et al. [9] performed a benchmarking study on the per-
formance of multiple effort estimation techniques. They employed
nine different data sets and two feature selection methods to train
13 different machine learning models. Besides, they used grid search
to select appropriate hyper-parameter values for each technique
lacking a recommended value in the literature.

Minku [23] proposed a novel technique for online effort estima-
tion using data clustering and hyper-parameter tuning techniques
to provide better estimates and minimize the need for collecting
within-company data. The study compared their technique to the
untuned version of the model, and other baselines for online effort
estimation. The results showed that their tuning approach increased
the accuracy with respect to the untuned model.

Xia et al. [37] present a hyper-parameter tuning architecture
called OIL for SEE. OIL is used to construct and evaluate the com-
binations of 3 optimizers and 2 learners against 4 ‘off-the-shelf’
methods. The study concludes that off-the-shelf methods and de-
fault parameters should be deprecated, and instead recommends the
usage of simple, automatic, effective and fast optimization methods
in conjunction with learners for SEE. Corazza et al. [8] applied the
Tabu Search technique as an automated hyper-parameter tuning
approach for support vector regression in the context of SEE.

Oliviera et al. [24] used Genetic Algorithms (GA) for simulta-
neous feature selection and hyper-parameter tuning applied to
machine learning algorithms for SEE.

Similar studies have been performed in other software engineer-
ing research areas. Tantithamthavorn et al. [33] applied a hyper-
parameter tuning approach (Caret optimization) to improve the
performance of defect prediction models. An extension study by
Tantithamthavorn et al. [34] further assess the interpretability of
models, transferability of parameters, and computational cost of
hyper-parameter tuning. Fu et al. [13] evaluate three defect predic-
tors using differential evolution tuning in 9 data sets. The results
of this study show that tuning defect predictors can be simple and
can improve their performance, to the point of changing which
learners are the ‘best’. Similarly, Agrawal et al. [1] propose a novel
tuning approach called DODGE(𝜖) that avoids redundant hyper-
parameter settings, runs orders of magnitude faster, and generates
more accurate models. Our future work will encompass evaluation
of some tuners proposed in these papers.

3 STUDY DESIGN

The main objective of this study is to investigate to what extent
the random search hyper-parameter tuning approach affects the
accuracy and stability of support vector regression for software
effort estimation. We compared the results against those obtained

from ridge regression models and grid search-tuned models. The
following research questions were posed:

RQ1 What is the improvement in prediction accuracy of support
vector regression when random search is used?

RQ2 How stable is the prediction accuracy of support vector re-
gression when random search is used?

RQ3 Which of the evaluated models yields the best accuracy for
SEE?

3.1 Data set

The analyses presented in this paper are based on the Interna-
tional Software Benchmarking Standards Group (ISBSG) Repos-
itory (https://www.isbsg.org/). We used the Development & En-
hancement 2018 Release 1 data set. The preprocessing and project se-
lection procedures were based on known recommendations [9, 30].
We selected projects with the following characteristics [9, 30]: (a)
Data points quality A or B. For IFPUG 4+ data sets, projects must
also have function point quality A or B. (b) Recorded effort accounts
only for development team. (c) Development type is new develop-
ment. (d) Functional sizing with the selected approach (IFPUG 4+
or COSMIC).

With the selected projects, we split the data set in subsets based
on the function point measure unit: IFPUG 4+ and COSMIC. We
select the IFPUG method as it is the most used in the industry [12]
and COSMIC as it has had high adoption in the latest years [10].
Moreover, we analyze the performance of the estimation models
using base functional components (BFC) and unadjusted function
points (UFP) as BFC are correlated with effort and can affect the
performance of the estimation models, quesada2016cosmic. Thus,
the study used four data sets obtained from ISBSG 2018 Release
1: IFPUG 4+ unadjusted function points (UFP), IFPUG 4+ basic
functional components (BFC), COSMIC full function points (FFP),
and COSMIC BFC. The preprocessing was applied to each data set
independently. Outlier values were not removed.

The feature selection procedure was performed based on the
protocol of Dejaeger et al. [9] and recommendations detailed in
González-Ladrón-de-Guevara et al. [14]. The following feature se-
lection guidelines were defined:

(1) Only retain features relevant for effort estimation
(2) Dimensionality reduction by removal of redundant features
(3) Remove features that are not available at the time of estima-

tion, such as Project Elapsed Time.
(4) Remove features with more than 25% missing values.

The exception to the second guideline was the function point
total. Instead, functional size features were selected depending on
the counting approach. For IFPUG 4+ UFP and COSMIC FFP, the
Functional Size feature was selected. For IFPUG 4+ BFC, the fea-
tures Input count, Output count, Enquiry count, and File count
were selected. For COSMIC BFC, the features COSMIC Entry, COS-
MIC Exit, COSMIC Read, COSMIC Write were selected. In all cases,
the remaining software size features were removed. In addition to
these, each set retained the following features: Application Group,
Architecture, Case Tool Used, Development Methodologies, De-
velopment Platform, Industry Sector, Intended Market, Language
Type, Max Team Size, Team Size Group, Used Methodology, and

https://www.isbsg.org/
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Table 1: ISBSG 2018 Release 1 data sets

Name Projects Features

COSMIC BFC 168 15
COSMIC FFP 168 12
IFPUG 4+ BFC 821 18
IFPUG 4+ UFP 821 14

Year of Project. SummaryWork Effort was the target feature. Table 1
contains the final descriptions of each data set.

3.2 Machine Learning Model Evaluation

In this study, machine learning models were trained and evaluated
using the data sets presented in section 3.1. The data was parti-
tioned using a hold-out group, where 90% of the data was used for
constructing the models and collecting the performance metrics,
and the remaining 10% was used as a prediction set or test set. The
evaluation process was conducted using the 90% of the data, and
was used to obtain the accuracy metrics presented in this study.

A second validation approach was used on the 90% of the data
selected to construct the models. We validated the performance of
the investigated SEE approaches through 10 times 10-fold Cross-
Validation (CV), based on previous work by Song et al. [31]. The
accuracy metrics were calculated for each validation fold.

After the metrics were obtained for the 90% set, the models
were evaluated one more time using the 10% set. To accomplish
this, all evaluated models were re-trained using the entirety of the
90% set and then were used to predict effort for the 10% set. The
metrics obtained were compared to those reported in the study,
with the objective of detecting problems such as overfitting and
data mismatch. In this case, the results obtained for the test set did
not greatly differ from those presented in the study.

3.3 Machine learning algorithms and
hyper-parameter settings

We constructed the SEE models by combining the following meth-
ods: logarithmic (Log) data transformation (DT), 2 feature selec-
tion (FS) methodsÐvariance threshold (VT) and correlation per-
centile (CP)Ð, and 2 machine learning algorithms(MLA)Ðsupport
vector regression (SVR) and ridge regression (RR). For model tun-
ing, we used 2 hyper-parameter tuning (PT) approaches:Ðrandom
search (RS) and grid search (GS). A total of twenty-four models were
compared. For example, we compared RS+Log+SVR with Log+SVR
and GS+Log+SVR. We did not investigate VT+SVR and CP+SVR,
as we determined from preliminary runs that feature selection had
almost no effect on accuracy when using SVR. We used the imple-
mentation from the scikit-learn library for Python (https://scikit-
learn.org/) for all studied models. The following sections explain
each technique and the reasoning behind its use.

3.3.1 Hyper-parameter tuning.

Grid search. Grid search is a hyper-parameter tuning approach
that evaluates each possible parameter combination in the search
space [4]. The search space is formed by a hyper-parameter grid:
a multi-dimensional space with one dimension per parameter. A
point in the search space is defined by a value along each dimension.

For example, a valid point in the search space comprised by hyper-
parameters 𝐶 = {100, 150, 200} and 𝛾 = {0.001, 0.01, 0.1} would be
(𝐶 = 150, 𝛾 = 0.01). Grid search explores all combinations of values
for each parameter (i.e., the entire search space). For each such
combination (point in the search space), a model is built and eval-
uated using those hyper-parameter values. The hyper-parameter
combination with the highest accuracy is reported. The scikit-learn
implementation of grid search search uses cross-validation for the
search process. We selected a 10-fold cross-validation approach.

Random search. Random search is an hyper-parameter tuning
approach that samples a subset of the search space, making it less
computationally expensive than grid search. Additionally, random
search provides a level of accuracy improvement comparable to
grid search [3]. The theoretical soundness of random search is
probability: assuming that at least 5% of all points in the hyper-
parameter space are optimal (or close) solutions, by sampling 60
points there is a 95% chance at least one of them will be in the
top-performing hyper-parameters [38]. Thus, we used a sample
of 60 hyper-parameters in this study. Similar to grid search, we
employed an inner 10-fold cross-validation approach.

Default hyper-parameters. To represent the scenario whithout
hyper-parameter tuning, we used the default hyper-parameter
values for each studied method, as defined by the scikit-learn li-
brary. This is our baseline for determining the accuracy improve-
ment of hyper-parameter tuning. In scikit-learn, the default hyper-
parameters for SVR are: a) kernel = rbf, b) 𝐶 = 1, and 𝜖 = 0.1 c)
𝛾 = 1/(𝑛 ∗ 𝑣𝑎𝑟 ) where 𝑛 = number of features, 𝑣𝑎𝑟 = variance of
the data set. The default hyper-parameter for ridge regression is
𝛼 = 1.0. The default hyper-parameter for VT is 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0. The
default hyper-parameter for CP is 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 = 10. Regarding the
kernel hyper-parameter for SVR, its default value is radial basis
function (rbf). This kernel has been successfully used in multiple
SEE studies [8, 17], and has shown to work well in both high and
low dimensional feature spaces when adequately adjusted [18].

3.3.2 Machine learning algorithms.

Support vector regression. Support vector machines (SVM) are a
type of model useful in high dimensional feature spaces [28]. This
technique searches for a boundary that splits the data based on
the target feature. Support vector regression is an approach based
on SVMs that is suitable for prediction problems [26]. SVR was
chosen for this study as it is a technique that has been used in
SEE literature [36], and whose accuracy depends on appropriate
hyper-parameter settings [19].

Ridge regression. Ridge regression is an approach based on ordi-
nary least squares (OLS) regression, which addresses the problem
of highly correlated attributes [9, 15, 16] by estimating the coef-
ficients using a ridge estimator. The ridge estimator is biased but
has a lower variance than the OLS estimator, due to the penalty
factor (𝜆), which penalizes high values of 𝛽 (coefficient), resulting
in coefficient shrinkage. This model is selected as a baseline for
comparison against SVR, as previous studies have reported that
regression-based models outperform more complex machine learn-
ing methods [9]. The scikit-learn implementation of this approach
applies standardization to the data. Ridge regression was selected

https://scikit-learn.org/
https://scikit-learn.org/
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as a baseline technique that has been successfully used in previous
SEE studies, such as Dejaeger et al. [9], Ertuğrul et al. [11], and
Malgonde et al. [22].

3.3.3 Feature selection.

Variance threshold. Variance thresholding (VT) is a basic feature
selection approach, based on the idea that low variance features
could be less useful than high variance features [2]. The method
calculates the variance of each feature, and then drops all those
whose variance is under the threshold. The sci-kit learn library
implementation has one hyper-parameter: the threshold value.

Correlation percentile. Pearson’s correlation coefficient can be
used as a filter approach for feature selection [28]. A feature se-
lection approach based on this metric calculates the correlation
between each feature and the target feature. Features that have
high correlation with the target are likely to be very informative
for model training [2]. Based on these correlations, a subset of the
most correlated features is selected.

Correlation percentile is a method based on the SelectPercentile
feature selector of the scikit-learn library and Pearson’s correlation
coefficient. The method calculates the correlation between each
feature and the target feature, and then selects those features with
the highest correlation in the percentile. This percentile can be
adjusted as a hyper-parameter of the method.

3.3.4 Data transformations.

Log. The logarithmic transformation has been traditionally used
in SEE studies [7, 9]. We used a modified version of this transforma-
tion, which is defined as 𝑥 = 𝑙𝑜𝑔(1 + 𝑥), where 𝑥 is each numerical
feature. The logarithmic transformation is used to address two prob-
lems in the data: 1) large differences in the feature ranges that can
bias the model, and 2) non-linearity in the feature space that may
affect the applicability of linear methods [7].

Whether or not the Log transformation is used, the following
transformations were applied to the data:

• Missing values are treated using 1NN (k-Nearest neighbors
with 𝑘 = 1) imputation [5].

• Categorical features are transformed via one-hot-encoding.
This representation converts a categorical feature with 𝐾
unique values into 𝐾 binary features. These features are
exempted from the data transformation technique.

3.3.5 Hyper-parameter values. The hyper-parameter values re-
searched in this study are shown in table 2. These values were
selected from existing recommendations in the literature [22, 31],
with modifications product of adjustment performed in preliminary
iterations. The grid size (amount of possible parameter combina-
tions) for each technique is as follows: 4128 for SVR, 29 for RR, 232
for VT+RR, and 261 for CP+RR. For the 𝛾 parameter of SVR, the
value auto equals to 1/𝑛 and scale equals to 1/(𝑛 ∗ 𝑣𝑎𝑟 ), where 𝑛 =
number of features.

3.4 Performance metrics

We measured the prediction accuracy of SEE models using several
metrics based on the absolute residual: 𝐴𝑅𝑖 = |𝑦𝑖 − 𝑦𝑖 |, where 𝑦𝑖 is
the observed effort value for the 𝑖-th project on the test set, and 𝑦𝑖

Table 2: Hyper-parameter values

Approach Hyper-parameters and values

SVR kernel = {rbf, sigmoid}
𝛾 = (10𝑥 , 𝑥 = {−3,−2.5,−2, ...,−0.5}) ; auto, scale
𝐶 = 1, 5, 15, 30, {50, 100, ... , 450}, {500, 1000, ... , 15000}
𝜖 = 10𝑥 , 𝑥 = {−3,−2.5,−2, ...,−0.5}

RR 𝛼 = 1, {5, 10, ..., 45}, {50, 75, ..., 500}

VT+RR 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5
𝛼 = 1, {5, 10, ..., 45}, {50, 75, ..., 500}

CP+RR 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 = {10, 20, 30, ... , 90}
𝛼 = 1, {5, 10, ..., 45}, {50, 75, ..., 500}

is the predicted effort for the same project. The absolute error is
calculated for each predicted value. The average of these errors is
the mean absolute residual (𝑀𝐴𝑅):

𝑀𝐴𝑅 =

1

𝑛

𝑛∑

𝑖=1

𝐴𝑅𝑖 . (1)

The median of the absolute residuals𝑀𝑑𝐴𝑅 is another summary
metric that is more resilient to outliers than𝑀𝐴𝑅.

We can also calculate the standard deviation 𝑆𝑑𝐴𝑅 of the 𝐴𝑅
values:

𝑆𝑑𝐴𝑅 =

1

𝑛

√√
𝑛∑

𝑖=1

(𝑦𝑖 −𝑀𝐴𝑅) . (2)

The standardized accuracy, defined by Shepperd andMacDonell [29],
is a ratio of how much better is the estimation model than the base-
line model. A value of 0 indicates the same accuracy as a random
guessing, while a negative value indicates lower accuracy than ran-
dom guessing. The use of such metric is recommended for compa-
rability with other studies. We used the modified version proposed
by Minku [23], which employs𝑀𝑑𝐴𝑅 instead of𝑀𝐴𝑅, as follows:

𝑆𝐴 = 1 −
𝑀𝑑𝐴𝑅

𝑀𝑑𝐴𝑅𝑝0
, (3)

where 𝑀𝑑𝐴𝑅𝑝0 is the median absolute residual of the baseline
predictor 𝑝0. We used the random estimation baseline model rec-
ommended by Langdon et al. [20].

To answer RQ1, the improvement in accuracy was determined
as 𝑖𝑚𝑝 = 𝑆𝐴1 − 𝑆𝐴2, where 𝑆𝐴1 and 𝑆𝐴2 are the standardized
accuracy of the tuned and untuned models, respectively. Positive
values indicate an improvement in accuracy, whereas negative
values indicate a diminishing in accuracy. A value of 0 indicates that
tuning has no effect in performance. The magnitude of changes was
quantified using the standardized metric described by Glass [25]:

Δ =

𝑀𝑑𝐴𝑅1 −𝑀𝑑𝐴𝑅2

𝑆𝑑𝐴𝑅2
, (4)

where𝑀𝐴𝑅1 is the𝑀𝐴𝑅 obtained by the hyper-parameter tun-
ing approach, and 𝑀𝐴𝑅2 and 𝑆𝑑𝐴𝑅2 are the 𝑀𝐴𝑅 and 𝑆𝑑𝐴𝑅 ob-
tained by default hyper-parameters, respectively. To interpret this
metric, we use the categories proposed by Cohen [6]:
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effect size =




negligible if Δ ≤ 0.2

small if 0.2 < Δ ≤ 0.5

medium if 0.5 < Δ ≤ 0.8

large if 0.8 < Δ

(5)

To answer RQ2, the stability ratio of tuned against default hyper-
parameters was calculated as [33]:

stability ratio =

𝑆𝑑𝐴𝑅1

𝑆𝑑𝐴𝑅2
(6)

where 𝑆𝑑𝐴𝑅1 and 𝑆𝑑𝐴𝑅2 are the 𝑆𝑑𝐴𝑅 obtained by tuned hyper-
parameters and default hyper-parameters, respectively. The stabil-
ity ratio metric functions as an inverse of 𝑆𝐴. A stability ratio of
1 indicates that the tuning method is equally stable as the default
hyper-parameters. Whereas values above 1 indicate that the tuning
approach induces instability, and values smaller than 1 indicate an
increase or improvement in stability.

3.5 Threats to validity

Internal validity. The accuracy of the constructed models is mea-
sured in standardized accuracy, which is calculated using a baseline
random model. In essence, the metric shows the ratio of improve-
ment over random guessing; and thus shows if the accuracy of a
model is due to random factors or due to the selected techniques.
In addition, we report other accuracy measures commonly used
in the literature to increase our comparability with other studies.
Another factor that may affect the causality of the metrics is the
split of training and validation data. To mitigate this effect, we have
employed 10 times 10-fold cross-validation.

Construct validity. One threat to construct validity is the vari-
ability of the ISBSG data set. As data are collected from multiple
sources, some variations on the measurements could affect the in-
tegrity of the data. To mitigate this effect, we selected only those
projects with high data quality rating. Another threat is the search
space for the hyper-parameter tuning approaches, as there are con-
straints on the execution time of this study. To reduce this threat,
the search space for these techniques was selected and validated
both through existing studies in tuning and empirical runs before
the experiment. Missing value imputation introduces some threats
to construct validity.

External validity. This study covers only the ISBSG 2018 Release
1 data set, thus limiting the reach of generalization of results to
other data sets or projects. Future work includes the extension of
this study into different data sets to provide more general results.

Conclusion validity. We use a large number of cross-validation
iterations to provide enough experimental runs and measurements.
Besides, we study the properties of the collected data (i.e. normality)
and validate the accuracy metrics with those from the test set. We
also validated the obtained results with previous SEE literature.
One threat to conclusion validity is the obtained effect size for the
hyper-parameter tuning approaches. According to the categories
by Cohen, tuning was negligible in all but two cases. This could
indicate that the results obtained in this study could be due to
randomness instead of a significant difference between tuned vs.

default parameters. However, results of the Scott-Knott analysis
show that tuned and untuned SVR models have significant 𝑆𝐴
differences.

4 RESULTS

4.1 Prediction accuracy improvement when
using random search

This section answers RQ1, which aimed at finding the improvement
in SVR prediction accuracy when using random search. For this,
we contrast hyper-parameter tuned models with untuned models
(using default hyper-parameters).

The accuracy improvements and effect size achieved by random
search for the SEE models constructed using each data set are
shown in Figure 1. The overall accuracy improvement, represented
as the median improvement (and standard deviation) for the models
are summarized in Table 3. The use of random search allowed for
the identification of a median increase in SA of up to 0.227. When
analyzing the ranges, we observed that the maximum value for 𝑆𝐴
improvement was around 1, outliers excluded. The improvement
provided by random search is not negligible for the ridge regression
model and the VT-RR, for the COSMIC FFP data set.

The performance improvement provided by random search has
an intrinsic relationship to the data set. Random search provided
accuracy improvements on models trained with the COSMIC data
sets than those trained with IFPUG 4+. It is also important to note
that the effect of tuning was far more noticeable when function
point total was used instead of BFC. Interestingly, also random
search decreased the performance of several models: 1 in COSMIC
BFC, 1 in IFPUG 4+ BFC, and 2 in IFPUG 4+ UFP, as can be seen
in Table 3. In all cases, this decrease in performance was less than
0.05 SA.

The model that benefited the most of hyper-parameter tuning
was Log+SVR, having the largest performance increase in three out
of four data sets, and median increases in 𝑆𝐴 ranging from 0.129
to 0.227, as shown in table 3. Random search also had a positive
effect on the SVR model, improving accuracy in all data sets. The
ridge regressionmodels were mostly improved when using function
point totals, but had their performance mostly unaffected in BFC
sets.

Random search provided similar increases in accuracy with re-
spect to grid search. For both SVR modelsÐSVR and Log+SVRÐthe
difference between grid search and random search does not exceed
0.21 SA, with the contrast that random search used a smaller search
space, obtaining results in less time. For the RR models, grid search
offers, at best, an increase of 0.045 SA over random search. One
explanation for random search having less performance than grid
may be due to the 5% top-performing parameters assumption of
the algorithm not applying to the searched space.

(RQ1) Random search increases the accuracy of SVR models
to a maximum of 0.227 SA. SVR models benefited from ran-
dom search in all of the data sets. The accuracy improvement
obtained by random search and grid search was very similar,
with grid search surpassing random search by at most 0.045
SA.
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Figure 1: Accuracy improvement and effect size of random search.

Table 3: Median and deviation accuracy improvement of parameter tuning.

COSMIC IFPUG 4+
BFC FFP BFC UFP

Md Sd Md Sd Md Sd Md Sd

RS+SVR 0.099 0.220 0.113 0.317 0.088 0.082 0.140 0.106
RS+RR 0.000 0.297 0.177 0.338 0.000 0.144 0.064 0.223
RS+VT+RR -0.012 0.291 0.165 0.335 0.002 0.211 0.113 0.235
RS+CP+RR 0.047 0.321 0.081 0.230 -0.041 0.182 -0.045 0.140
RS+Log+SVR 0.129 0.261 0.180 0.406 0.166 0.094 0.227 0.129
RS+Log+RR 0.005 0.279 0.183 0.316 0.000 0.022 0.104 0.237
RS+Log+VT+RR 0.005 0.277 0.152 0.349 0.000 0.165 0.091 0.241
RS+Log+CP+RR 0.036 0.214 0.014 0.244 0.000 0.191 -0.012 0.159

GS+SVR 0.102 0.232 0.092 0.323 0.105 0.076 0.156 0.098
GS+RR 0.000 0.297 0.177 0.338 0.000 0.144 0.064 0.223
GS+VT+RR 0.000 0.313 0.160 0.345 0.000 0.169 0.108 0.237
GS+CP+RR 0.018 0.249 0.083 0.233 0.000 0.167 0.000 0.067
GS+Log+SVR 0.128 0.262 0.171 0.433 0.177 0.094 0.223 0.117
GS+Log+RR 0.005 0.279 0.183 0.316 0.000 0.022 0.104 0.237
GS+Log+VT+RR 0.007 0.299 0.158 0.353 0.000 0.057 0.093 0.233
GS+Log+CP+RR 0.040 0.275 0.001 0.249 -0.014 0.175 -0.002 0.154

4.2 Prediction accuracy stability when using
random search

This section answers RQ2, which sought to determine the stability
of SVR prediction accuracy when using random search. For this,
we compare the variability in accuracy produced across each cross-
validation iteration and data set.

Table 4 shows the median and standard deviation of the stability
ratio for each data set and SEE model. In the majority of cases,
models tuned by random search were as stable as those with de-
fault hyper-parameters. The median stability ratio of all techniques
across all data sets is below 1.040 and often below 1. At its best,
random search was able to reduce the median stability ratio of a
SEE model to 0.840, and up to a maximum reduction of around 0.5
stability ratio.

The accuracy of the Log+SVR and SVR models became more sta-
ble due hyper-parameter tuning. These techniques boast a median

stability ratio of 0.842 to 0.986 for Log+SVR, and 0.840 to 1.004 for
SVR, as shown on table 4. For ridge regression models, the stability
ratio varies from 0.880 to 1.040. Most cases in which regression
models had a median increase in variability were on the IFPUG 4+
data sets.

When comparing the stability ratios of the models constructed
using random search and grid search, both techniques produced
highly similar results. For both SVR and Log-SVR, the differences be-
tween grid search and random search did not exceed 0.045. In most
cases, grid search showed a better stability than random search.
However, these differences are not large. At best, grid search offered
an increase in stability ratio of 0.008, when compared to random
search applied to regression techniques. Thus, the accuracy stabil-
ity achieved by random search and grid search can be deemed as
similar.
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Table 4: Median and deviation stability ratio of parameter tuning.

COSMIC IFPUG 4+
BFC FFP BFC UFP

Md Sd Md Sd Md Sd Md Sd

RS+SVR 1.004 0.074 0.840 0.215 0.958 0.043 0.877 0.113
RS+RR 1.000 0.119 0.971 0.204 1.000 0.248 1.006 0.239
RS+VT+RR 0.999 0.146 0.971 0.203 1.040 0.288 1.010 0.262
RS+CP+RR 0.981 0.192 0.996 0.112 1.000 0.188 1.000 0.122
RS+Log+SVR 0.986 0.085 0.842 0.210 0.911 0.059 0.915 0.085
RS+Log+RR 0.997 0.124 0.880 0.177 1.000 0.006 1.018 0.188
RS+Log+VT+RR 0.988 0.134 0.892 0.178 1.000 0.136 1.024 0.184
RS+Log+CP+RR 0.980 0.095 0.998 0.112 0.999 0.081 1.001 0.135

GS+SVR 1.002 0.084 0.885 0.254 0.958 0.043 0.864 0.076
GS+RR 1.000 0.119 0.971 0.204 1.000 0.248 1.006 0.239
GS+VT+RR 1.000 0.127 0.968 0.200 1.005 0.266 1.009 0.261
GS+CP+RR 0.980 0.190 0.996 0.117 1.000 0.075 1.000 0.033
GS+Log+SVR 0.984 0.082 0.845 0.191 0.922 0.054 0.909 0.078
GS+Log+RR 0.997 0.124 0.880 0.177 1.000 0.006 1.018 0.188
GS+Log+VT+RR 0.985 0.130 0.899 0.170 1.000 0.014 1.023 0.184
GS+Log+CP+RR 0.988 0.092 1.000 0.104 0.999 0.074 1.000 0.125

(RQ2) Random search maintained median prediction sta-
bility for all constructed models, with a maximum stability
ratio of 1.040. SVR models gained the most stability when
tuned with random search, to a minimum of 0.840. Accuracy
stability obtained by random search and grid search was
very similar, with at most grid search surpassing random
search by a ratio difference of 0.045.

4.3 Ranking of SEE models based on
standardized accuracy

This section answers RQ3, which strove for the best performing
models. To achieve this, we ranked all the constructed SEE models.
This was done using the Scott-Knott algorithm [27]. This method
uses a hierarchical clustering algorithm to partition the treatments
into equal groups. Starting from a group comprised by all treat-
ments, the algorithm splits it into two non-overlapping groups. The
procedure orders the groups by the accuracy metric and splits it
into two groups by determining the largest difference. The process
is repeated, for each group, if the treatments are not equal.

Figure 2 shows the ranked clusters and SA of each SEE model
researched in this study, per data set. The median 𝑆𝐴,𝑀𝑑𝐴𝑅, and
𝑆𝑑𝐴𝑅 of all researched SEE models across the different analyzed
data sets is available in Table 5. The models that belong in the
top group are highlighted. It can be appreciated that, the high-
est observations are comprised of RS+Log+SVR and GS+Log+SVR.
In the case of COSMIC BFC, the highest group is comprised by
RS+Log+SVR, GS+Log+SVR RS+SVR, and GS+SVR. Based on the
results of the Scott-Knott method, RS+Log+SVR and GS+Log+SVR
always outperformed their default counterpart, Log+SVR. Similarly,
RS+SVR and GS+SVR always ranked above both SVR and Log+SVR.
It is also noteworthy, that our results indicated that tuned Log+SVR
outperformed other models such as RR or VT+RR. RS+Log+SVR has
a median 𝑆𝐴 from 0.398 to 0.488 across all data sets. GS+Log+SVR
has a median 𝑆𝐴 from 0.420 to 0.486 across all data sets. This shows
a moderate improvement of prediction accuracy over the baseline.
Moreover, this indicates that, for all data sets, random search has
the same accuracy than grid search when applied to Log+SVR.

The SVR models presented similar or better prediction accuracy
than the RR models. Second to the tuned Log+SVR models, the SVR,
Log+SVR, RS+SVR, and GS+SVR models formed the highest ranked
groups for the COSMIC BFC, IFPUG 4+ BFC, and IFPUG 4+ UFP.
Interestingly, The COSMIC FFP data set is the exception; the third
group being comprised of both untuned SVR and tuned RR models.
The median 𝑆𝐴 of the SVR models always was above 0.2; ranging
from 0.325 to 0.434 for the RS+SVR model, from 0.301 to 0.440 for
the GS+SVR model, from 0.245 to 0.378 for the Log+SVR model,
and from 0.245 to 0.378 for the SVR model. Moreover, the RS+SVR
and GS+SVR models belonged to the same group in all data sets.
This indicates that, random search has the same accuracy than grid
search when applied to SVR.

The accuracy of ridge regression models depends on the data
set. For COSMIC data sets, the median 𝑆𝐴 of ridge models ranged
from −0.02 to 0.266, and in the majority of cases (41 out of 72)
the median 𝑆𝐴 was between −0.1 and 0.3. On COSMIC BFC, the
hyper-parameter tuned RR models have a larger 𝑆𝐴 than their
unoptimized counterparts (excepting one case). For IFPUG 4+ data
sets, the performance of ridge regression models was always below
the baseline. The exception to this tendency were the three CP+RR
models in the IFPUG 4+ UFP data set.

SVR models generally had better performance in BFC data sets
than in FFP data sets, which would indicate that there is value in
using the basic functional components as features for SEE. Future
work could further study the use of BFC against or along with the
functional size.

(RQ3) Tuned SVR models outperformed all other studied
SEE models. Particularly, RS+Log+SVR and GS+Log+SVR
placed in the top group in all datasets. Thesemodels achieved
a maximum median 𝑆𝐴 of 0.488. Other SVR-based models
often achieved high places in the ranking. In addition, SVR
models tuned with random search were equivalent in accu-
racy to SVR models tuned with grid search.
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(a) COSMIC BFC (b) COSMIC FFP

(c) IFPUG 4+ BFC (d) IFPUG 4+ UFP

Figure 2: Scott-Knott clusters and SA of the studied SEE models.

5 DISCUSSION

Our results confirmed previous findings in the SEE literature. The
hyper-parameter tuned SVR model had a significantly better perfor-
mance than other regression methods. Besides, tuned SVR models
had better prediction accuracy than untuned SVR. However, the
effect of random search on the accuracy was negligible, accord-
ing to the metric based on Glass’s Delta. Further research with a
larger hyper-parameter search space is necessary to corroborate
this result.

Results obtained as part of RQ2 showed that random search
was able to maintain or increase prediction stability, compared
to default settings. This confirms previously reported results by
Tantithamthavorn et al. [33]. The increase in stability was larger
for SVR models, showing the importance of appropriate hyper-
parameter tuning.

For COSMIC function points, the prediction accuracy for SVR
models was higher when models were trained and tested with data
sets that used basic functional components over function point total.
This goes against previous studies that use the ISBSG repository [9,
11, 17, 23, 32], as they choose to select the function point total
over the individual components. Our results show that SEE models

could benefit from the use of BFC as features. For instance, SEE
models could determine if BFC affected effort differently, depending
on other features. For example, input points could involve more
effort in projects developed with programming language A over
programming language B. Future work could research use BFC
alongside total functional size for SEE models.

Results obtained across all research questions show that the per-
formance of random search is similar to that of grid search, when
applied to support vector regression. RQ1 showed that the increase
in accuracy with respect to default parameters was very similar,
with a difference of at most 0.045 𝑆𝐴. Similarly, RQ2 shows that the
stability of random search and grid search is very similar, with a dif-
ference of at most 0.045. Lastly, RQ3 shows that SVR models tuned
with random search have performance equivalent to those tuned
with grid search. These results suggest that random search could
be used as a baseline technique for research on hyper-parameter
tuning for SVR in the ISBSG data set, with almost no effect on pre-
diction accuracy. Further comparisons among the techniques are
necessary before being able to generalize this statement to other
data sets and MLAs.
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Table 5: Median SA, MdAR, and SdAR of all models.

COSMIC IFPUG 4+
BFC FFP BFC UFP

SA MdAR SdAR SA MdAR SdAR SA MdAR SdAR SA MdAR SdAR

SVR 0.378 2186 3664 0.245 2162 4111 0.305 1918 9297 0.259 1786 9968
RR 0.157 2667 3498 -0.020 2659 2909 -0.255 3285 6636 -0.224 2890 6450
VT+RR 0.157 2667 3498 -0.020 2659 2909 -0.255 3285 6636 -0.224 2890 6450
CP+RR 0.175 2946 2959 0.149 2386 2629 -0.118 2805 6679 0.121 2071 7035
Log+SVR 0.378 2184 3664 0.245 2160 4112 0.304 1916 9294 0.258 1798 9975
Log+RR 0.124 2790 3195 -0.010 2918 2796 -0.270 3238 6490 -0.493 3645 6754
Log+VT+RR 0.124 2790 3195 -0.010 2918 2796 -0.270 3238 6490 -0.493 3645 6754
Log+CP+RR 0.137 2921 2926 0.129 2446 2510 -0.273 3270 6675 -0.383 3295 6872

RS+SVR 0.434 1882 3709 0.325 1928 3128 0.369 1638 8686 0.401 1421 8538
RS+RR 0.173 2775 3214 0.248 2035 2730 -0.246 3294 7151 -0.104 2632 6609
RS+VT+RR 0.133 2800 3137 0.262 2071 2732 -0.237 3190 7468 -0.085 2633 6644
RS+CP+RR 0.137 2753 2864 0.266 2109 2704 -0.169 3007 6841 0.014 2291 6905
RS+Log+SVR 0.488 1662 3444 0.398 1515 3058 0.468 1434 8375 0.478 1212 8987
RS+Log+RR 0.215 2779 2972 0.099 2391 2373 -0.270 3228 6490 -0.385 3388 6765
RS+Log+VT+RR 0.134 2804 2915 0.126 2395 2337 -0.298 3453 6564 -0.389 3408 6761
RS+Log+CP+RR 0.134 2794 2778 0.096 2369 2342 -0.251 3233 6400 -0.414 3418 6708

GS+SVR 0.440 1810 3602 0.301 1998 3196 0.388 1604 8652 0.421 1394 8496
GS+RR 0.173 2775 3214 0.248 2035 2730 -0.246 3294 7151 -0.104 2632 6609
GS+VT+RR 0.203 2789 3199 0.223 2129 2758 -0.226 3220 7251 -0.082 2615 6644
GS+CP+RR 0.107 2858 2891 0.253 2077 2739 -0.129 2850 6592 0.121 2082 7035
GS+Log+SVR 0.473 1685 3453 0.420 1561 2945 0.465 1424 8470 0.486 1196 9099
GS+Log+RR 0.215 2779 2972 0.099 2391 2373 -0.270 3228 6490 -0.385 3388 6765
GS+Log+VT+RR 0.206 2789 3002 0.118 2433 2388 -0.270 3228 6490 -0.401 3408 6765
GS+Log+CP+RR 0.139 2633 2853 0.094 2394 2379 -0.242 3261 6488 -0.419 3468 6736

We compared the results obtained from this study with those
from recent (2018ś2019) SEE studies that use hyper-parameter
tuning, SVRs, and the ISBSG data set.

Ertuğrul et al. [11] performed an experiment to compare 9 dif-
ferent machine learning algorithms, including grid search-tuned
SVR. They partition the ISBSG Release 11 data set into five sub-sets
depending on their effort size, and using IFPUG 4+ total functional
size. In their second case study, using 10-fold CV, they report MAR
values for the SVR model of 1242, 825, 1098, 838, and 5847. In com-
parison, our RS+Log+SVR and GS+Log+SVR models achieved a
median 𝑀𝑑𝐴𝑅 of 1196 and 1212, respectively. In three cases, our
study resulted in a model with a larger absolute residual, even when
using a larger amount of data. Grouping of ISBSG projects accord-
ing to project size is a worthwhile data transformation to explore
in future studies.

Song et al. [32] proposes a prediction interval estimator called
Synthetic Bootstrap ensemble of Relevance Vector Machines (SynB-
RVM). They perform an evaluation using seven partitions of the
ISBSG Repository Release 10, using IFPUG FPA. This evaluation
compares their proposed technique to multiple hyper-parameter
tuned point estimators, including SVR. For the 7 studied data sets,
SVR resulted in median accuracy scores of 𝑆𝐴 of 0.465, 0.363, 0.461,
0.364, 0.325, 0.327, 0.247. In terms of𝑀𝑑𝐴𝑅, their SVR scored 546,
828, 517, 2118, 3955, 2032, and 3807. Our RS+Log+SVR achieved a
median 𝑆𝐴 of 0.478 and a𝑀𝑑𝐴𝑅 score of 1212, and our GS+Log+SVR
a median 𝑆𝐴 of 0.486 and a𝑀𝑑𝐴𝑅 score of 1196. We thus verify that
the results of this study are in line with those previously reported
in SEE literature.

Hosni et al. [17] study the effect of hyper-parameter values on
heterogeneous ensemble effort estimation. We focus on the results
obtained in the first experimental study presented by the paper,
in which four base techniques, including SVR, are trained on the

ISBSG Repository Release 8 data set, using IFPUG FPA. The study
applies three hyper-parameter tuning approachesÐgrid search (GS),
particle swarm optimization (PSO), and uniform configuration (UC,
default hyper-parameters). For the GS-SVR, PSO-SVR, and UC-SVR
models, the study reported 𝑆𝐴 values of 0.558, 0.605, and 0.463. The
increase in accuracy achieved by grid search is 0.095. While the
RS+Log+SVR model scored lower 𝑆𝐴 values (0.478 in IFPUG 4+
UFP), it was able to achieve a higher increase in 𝑆𝐴 using random
search 0.227. The GS+Log+SVR model also resulted in a higher
increase in 𝑆𝐴 with respect to default parameters (0.223). This
increase in accuracy could potentially be attributed to the larger
amount of projects in the ISBSG 2018 Release 1 and a larger search
space. The results are similar to those previously reported in the
SEE literature. The difference in results can be attributed to the
version of the ISBSG data set, as well as the preprocessing applied
to the data.

6 CONCLUSION

In this paper we evaluated the the impact of hyper-parameter tun-
ing using random search (RS), and compared it with the accuracy
of models tuned using the more exhaustive grid search in support
vector regression algorithms. Our RS tuned SVR models were com-
pared to multiple estimators, which included those subjected to
tuning by RS and GS, as well as non-tuned models. The study used
4 sub sets of the ISBSG 2018 Release 1 data set to train and evaluate
these models. Our findings indicated that performance of RS-tuned
models was highly similar to those of grid search-tuned SEE models.

Furthermore, this study demonstrated that use of RS for model
tuning could provide an improvement in model stability. This ob-
servation was considerable for SVR models, which had the best
median metrics for accuracy and stability. Because RS searches
a limited parameter space or number of iterations, compared to
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grid search, this could have accounted for some instances were
our results were lower than expected. Finally, we identified that
model tuning and data processing, in this case using logarithmic
transformation, improved model performance.

The results in our work confirm: 1) the use of hyper-parameter
tuning and data processing was crucial in constructing capable
predictive SVRmodels, 2) model stability and accuracy are improved
by the use adequate hyper-parameter tuning strategies, such as
grid search or random search, and 3) the performance of the less
exhaustive random search was comparable to the costly grid search,
making random search a viable alternative for hyper-parameter
tuning.

Future work encompasses various directions. One possibility
would be extending this study to further compare random search
and grid search using the data transformations, feature selectors,
and machine learning algorithms that are most used in SEE litera-
ture. The evaluation performed in this study could also be replicated
in more data sets to further generalize the obtained results. Future
work could also explore comparing the performance of other hyper-
parameter tuning approaches, such as hill climbing, genetic, and
other search algorithms. Another line of research would be to in-
vestigate further the properties of the ISBSG 2018 Release 1 data set,
and determine which preprocessing techniques would help increase
prediction accuracy.
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