

4° International Conference on IT Data collection, Analysis and Benchmarking Los Angeles, CA (USA) – September 7, 2016

Measuring and Estimating an IoT Project

IoT – The Internet of Things

Dr. Thomas Fehlmann Euro Project Office AG, Zürich, Switzerland

https://itconfidence2016.wordpress.com

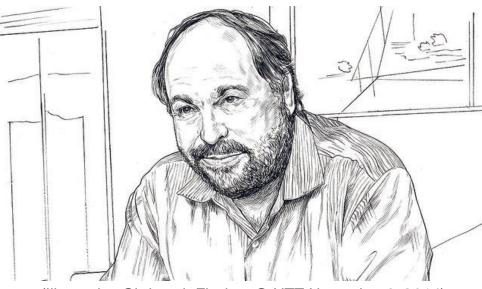
- ✓ G1. IoT Projects are different from traditional Software Development
- ✓ G2. Functional Size matters, but not for cost
- ✓ G3. Cost Drivers are Fun, Social Ranking, Safety and Security

- 1. What is the Internet of Things? Why does it matter?
- 2. IoT Frameworks
- 3. Customer Driven Approach
- 4. Cost Estimation

- 1. What is the Internet of Things? Why does it matter?
- 2. IoT Frameworks
- 3. Customer Driven Approach
- 4. Cost Estimation

The Vision – Intelligent Things

IT Confidence 2016 – September 7, 2016



The Internet of Things (IoT)

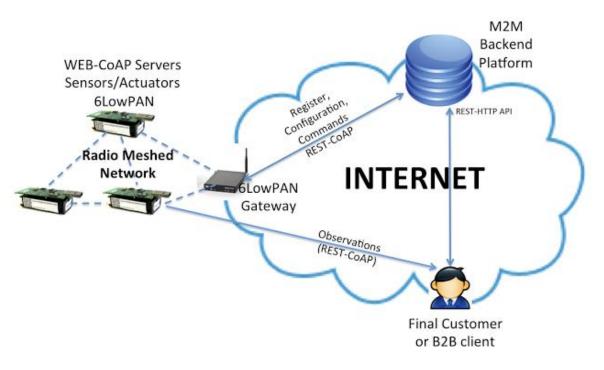
- ➤ By end of the decennia, 50 Mia things like fridges, kitchen appliances and other intelligent things will connect to the Internet
- They will be able to order milk when finished, turn light on or off when needed, and run washing machines during periods of low electricity rates
- ➤ They will drive autonomous cars, avoid traffic jams, prevent traffic hazards
- > What is their future value for business?

Paul Maritz


(Illustration Christoph Fischer; © NZZ November 3, 2014)

Everybody will be writing software

The Internet of Things (IoT)



Paul Maritz, CEO Pivotal

(Illustration Christoph Fischer; © NZZ November 3, 2014)

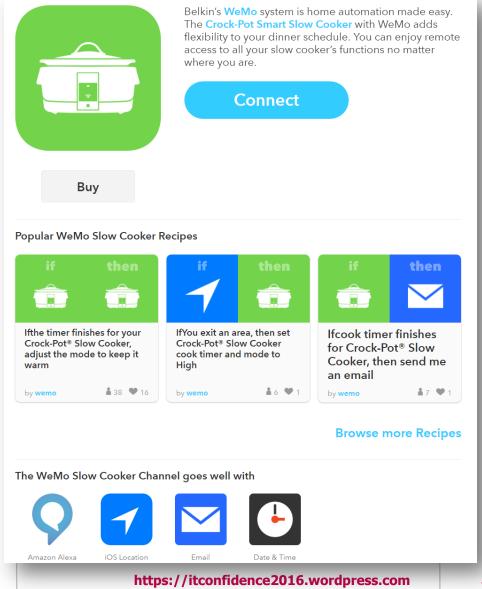
The Architecture of the Web of Things

http://en.wikipedia.org/wiki/Web_of_Things

http://de.wikipedia.org/wiki/6LoWPAN

http://en.wikipedia.org/wiki/Constrained_Application_Protocol

- The Web of Things (WoT) is a set of software architectural styles and programming patterns
- The Web of Things reuses existing Web standards used in the
 - programmable Web (REST, HTTP, ...)
 - semantic Web (JSON-LD, Microdata)
 - real-time Web (e.g, Websockets), and
 - social Web (e.g., oAuth or social networks)


I'm the Programmer!

- Programming framework
 - Ease of use
 - Graphical
 - Transparent
- > The code is the truth
 - I want to see my C/C++
- > I'm better than others
 - I need Metrics

I'm the Programmer!

- Programming framework
 - Ease of use
 - Graphical
 - Transparent
- > The code is the truth
 - I want to see my C/C++
- > I'm better than others
 - I need Metrics

IT Confidence 2016 – September 7, 2016

Belkin's WeMo system is home automation made easy. The Crock-Pot Smart Slow Cooker with WeMo adds flexibility to your dinner schedule. You can enjoy remote access to all your slow cooker's functions no matter where you are.

```
#include "mbed.h"
     DigitalIn button1( SW2 );
                                          // Right Button on ARM Board
     DigitalOut led( LED1 );
     int main()
         led = 1;
                                          // red (RGB LED use inverse logic
                                          // 1 = OFF, \emptyset = ON)
11
         while ( true )
             if ( button1 == 0 )
                                          // Button pressed
14
                 led = 0:
15
             else
                 led = 1;
17
```

Browse more Recipes

The WeMo Slow Cooker Channel goes well with

The Vision – My Kitchen Helper

- > He knows what I intend cooking
 - By reading recipes
- > Watches temperatures while I'm off
 - Reading e-Mails, during phone calls...
- > Prepares my shopping list
 - Knows what I need and what's missing
- Does shopping in e-Shops
 - I'll pick up the shopping bag at the next stop
- > Tells oven and boiling plates what's on tonight

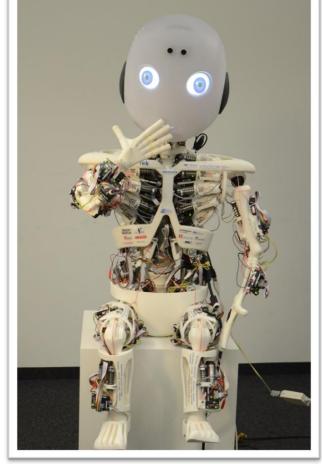


Bild Roboy © ZHAW School of Engineering, Rolf Pfeifer

The Vision – User's Requirements

- ➤ My kitchen is my castle I do the Kitchen Helper Programming!
 - I don't want anybody else controlling my cooking
- > I buy appliances and write my own collaboration software
 - I expect suppliers to provide intelligent kitchen appliances
- > Programming must be straightforward and easy to use
 - I expect suppliers to provide programmable kitchen appliances
- > Suppliers must endorse open standards
 - Otherwise, I look for other offers
- > Suppliers must guarantee **Safety** and **Security** of their products

The Vision – Constraints

- > The Kitchen Helper Framework must be a collaborative approach between
 - Grocery and Diary e-Shops
 - Cooking sites publishing Cooking Recipes
 - Kitchen Appliance Software Providers

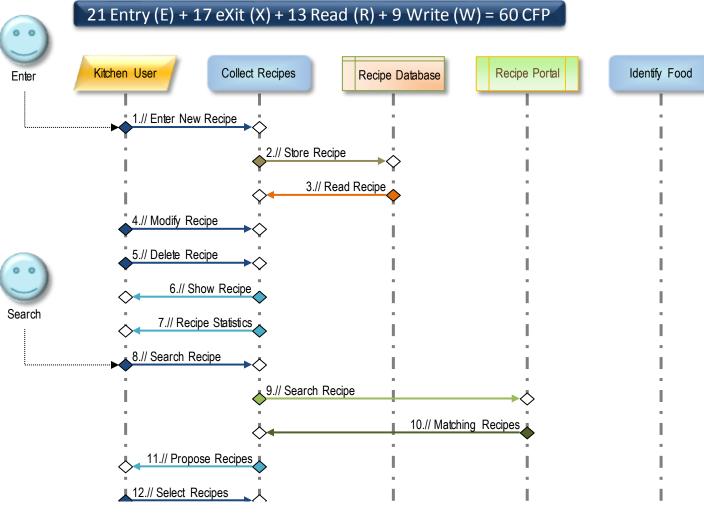
We want Open Standards!

However, Complexity is Roaring...

- ➤ What are the possible effect caused by Failure?
 - Wrong shopping? No dinner?
 - Boilerplate overheating?
 - Blasting the house?
- Where to start Measuring?
 - Which requirements?
 - What NFR scenarios?
- ➤ Benchmarking with What??
 - Any data out there?

@ NASA

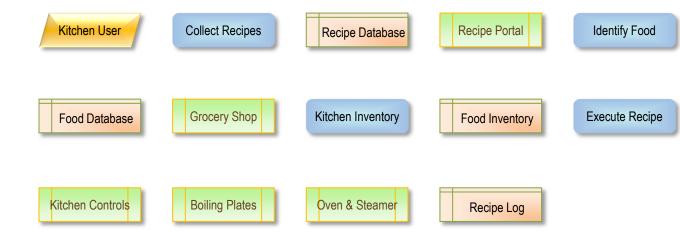
- 1. What is the Internet of Things? Why does it matter?
- 2. IoT Frameworks
- 3. Customer Driven Approach
- 4. Cost Estimation



IoT Frameworks – A Model of Functionality

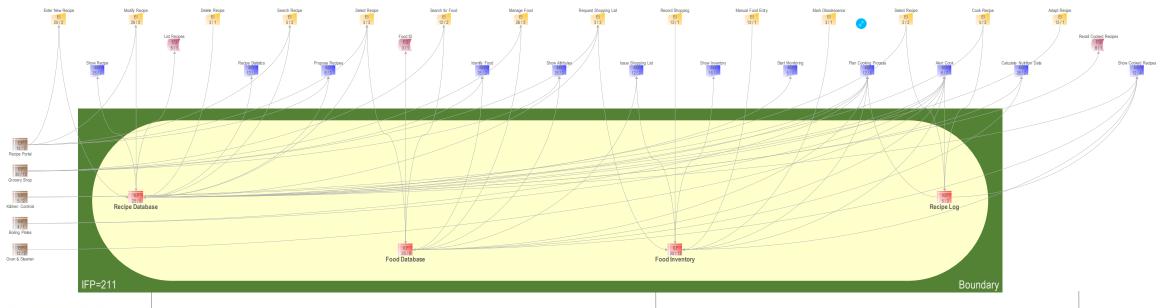
> A Framework is a model of

- Functionality
- Building Blocks
- Software
- Users can build own apps
 - Based on the functionality and the building blocks of the framework



IoT Frameworks – Building Blocks

- > IoT Frameworks consist of
 - Sensor/actuator stubs
 - Interface library
 - Integrated Development Environment (IDE)
- > IoT Framework reward system
 - People need to get appraisal
 - Must ask the Community
 - Social entitlement



- send create well pages and fundal new semplane requipment. Accordance I even below the page of the pag
- Wow! A Kitchen Helper with 211 Function Points!

- More than one model is needed
 - COSMIC Model as an IDE interface
 - IFPUG Model to explain guests what she/he achieved

In IoT – as nowadays

everywhere else – software size measurement is automated

- 1. What is the Internet of Things? Why does it matter?
- 2. IoT Frameworks
- 3. Customer Driven Approach
- 4. Cost Estimation

> I'm a Grocery Store and want loyal customers

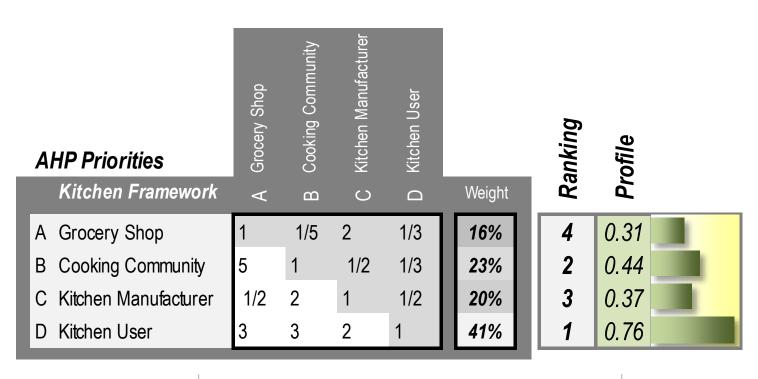
Having fun with us

Loving IoT programming as a game

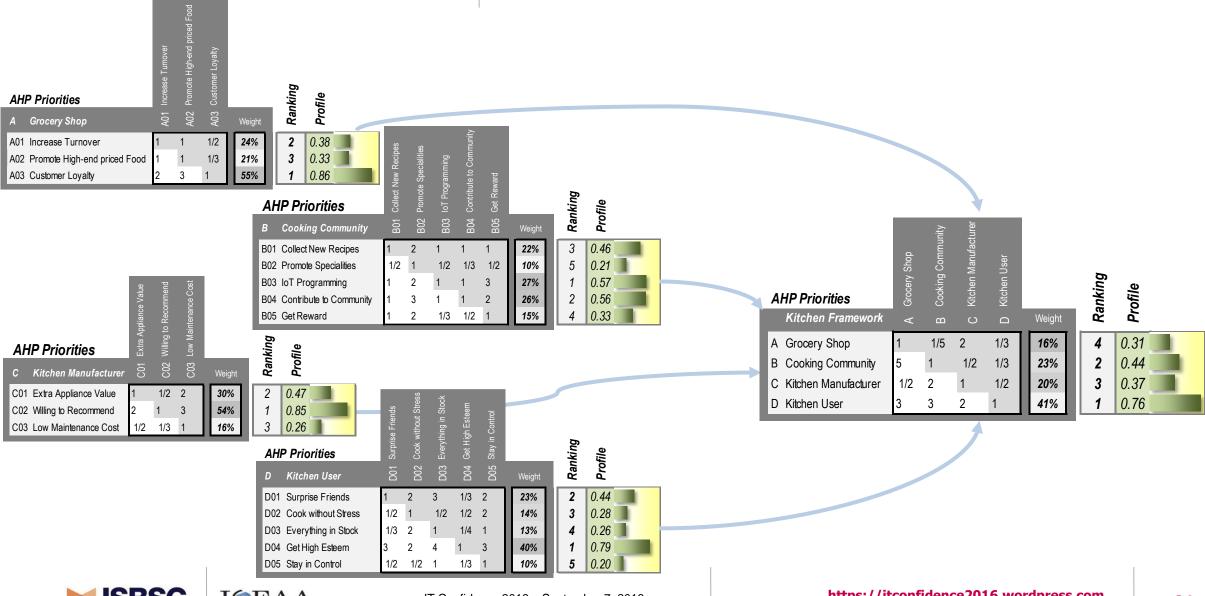
Coming back to buy our stuff

I need help from Collaborators

- Cooking Communities
- IoT Programmers
- Kitchen Manufacturers
- ... and the home cooking people



Customer Driven Approach – Customer's Requirements


- ➤ The Analytic Hierarchy Process (AHP) allows determining Business Drivers' priorities among various Stakeholders
 - Grocery Shops
 - Cooking Community
 - Kitchen Manufacturer
 - Kitchen User

Customer Driven Approach – Analytic Hierarchy Process

My Framework Project Strategy

Top Business Drivers Kitchen Framework

Top Business Drivers
A03 Customer Loyalty
B03 IoT Programming
B04 Contribute to Community
C01 Extra Appliance Value
C02 Willing to Recommend
D01 Surprise Friends
D04 Get High Esteem

Find special food
Feel special
for new ideas
competition
Kitchen helper helps!
Make friends envious

Weight	Profile	
14%	0.35	
10%	0.25	
10%	0.24	
9%	0.23	
17%	0.42	
15%	0.36	
26%	0.64	

- > Selecting User Stories for Building the Framework
 - Functional User is the IoT Programmer
 - Assembles its personal kitchen helper in order to have fun with good food

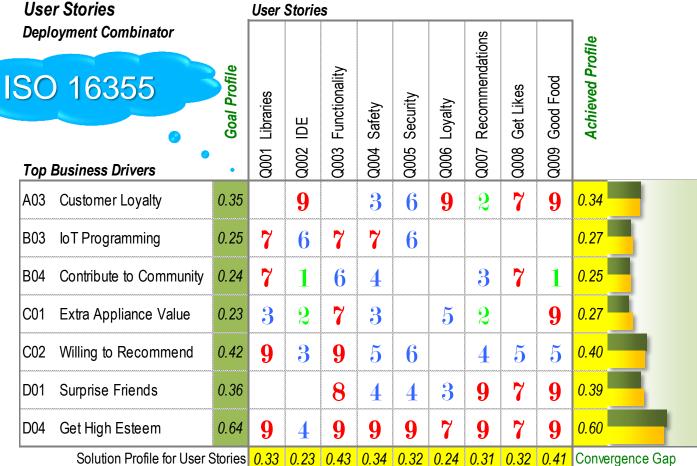
	User Stories As a [functional user]		I want to [get something done]	such that[quality characteristic]	so that [value or benefit]		
1	Q001 Libraries	IoT Programmer	find relevant libraries to my kitchen IoT	I can talk to intelligent kitchen appliances	plug-ins are ready for use		
2) Q002 IDE	IoT Programmer	get help when programming	the IDE proposes relevant functions	I save on time when programming		
3	Q003 Functionality	IoT Programmer	use intelligent kitchen appliances	they provide the needed functionality	people love to talk with me about it		
4	Q004 Safety	IoT Programmer	be sure I cannot harm anybody with my programs	all components are fail safe	I can connect whatever comes to my mind		
5	Q005 Security	IoT Programmer	be sure nobody gets unauthorized access to my home	I can see who's trying to get in	lall components are private and secured		
6	Q006 Loyalty	Groocery Shop	get returning customers	they come back because satisfied	I don't need an expensive IoT support		
7	Q007 Recommendations	Kitchen Manufacturer	provide more intelligent appliances than competition	customers recommend	I'll stay in the market		
8) Q008 Get Likes	IoT Programmer	get many likes for my programs	I become famous	I can continue programming		
9	Q009 Good Food	Kitchen User	eat good food	it makes me happy	I enjoy life		

- Now we go to our friends, colleagues and business partners
 - Proposing collaboration for building the framework
 - Explaining them mutual interest
 - Win-Win Situation

- > They are enthusiastic
 - However, they have a question:

Customer Driven Approach – The Big Question

- 1. What is the Internet of Things? Why does it matter?
- 2. IoT Frameworks
- 3. Customer Driven Approach
- 4. Cost Estimation



Cost Estimation by Quality Function Deployment (QFD)

Design Solution by Cost

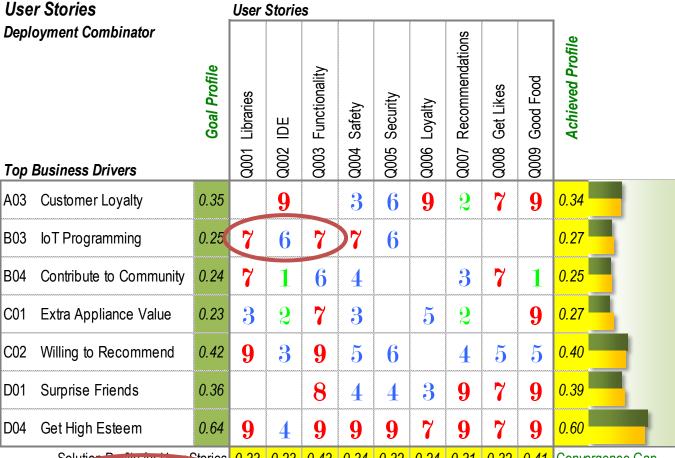
- Do an Estimation QFD
- Matrix Top Business Drivers against User Stories
- Fill in every cell how much you want to spend on it in terms of effort or money
- Use ratio scale a 9 means three times as much as a 3
- All are relative values!

Total Business Impact: 300

0.10 Convergence Range

0.20 Convergence Limit

IT Confidence 2016 – September 7, 2016



0.07

Cost Estimation by Quality Function Deployment (QFD)

Minimize Convergence Gap

- Small means user stories cover requirements
- > Total Business Impact
 - Sum of all cell values 300
 - Corresponds to project cost for providing the framework
- > Calibrate
 - Identify functional entries
 - Count their functional size

Solution Profile for User Stories 0.33 0.23 0.43 0.34 0.32 0.24 0.31 0.32 0.41 Convergence Gap

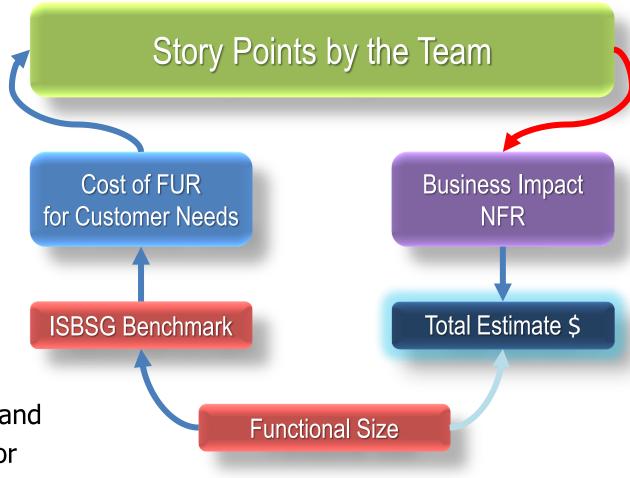
Total Business Impact: 300

0.10 Convergence Range

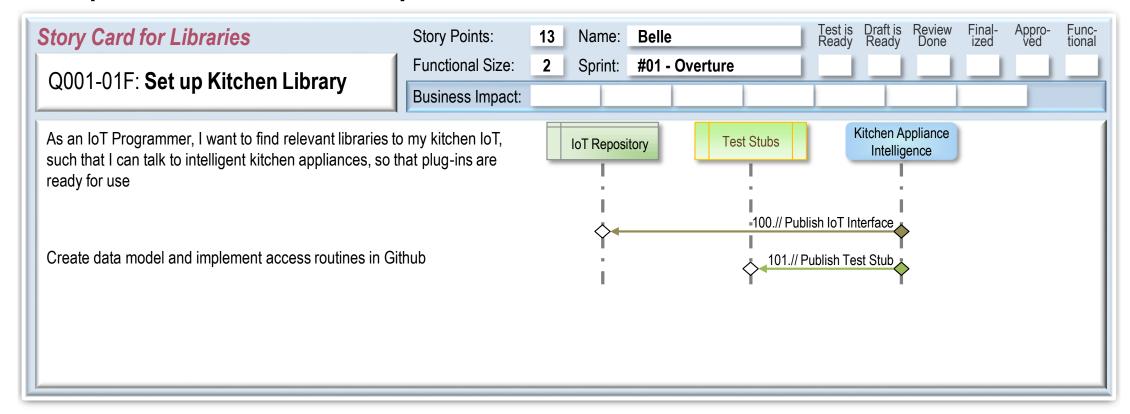
0.20 Convergence Limit

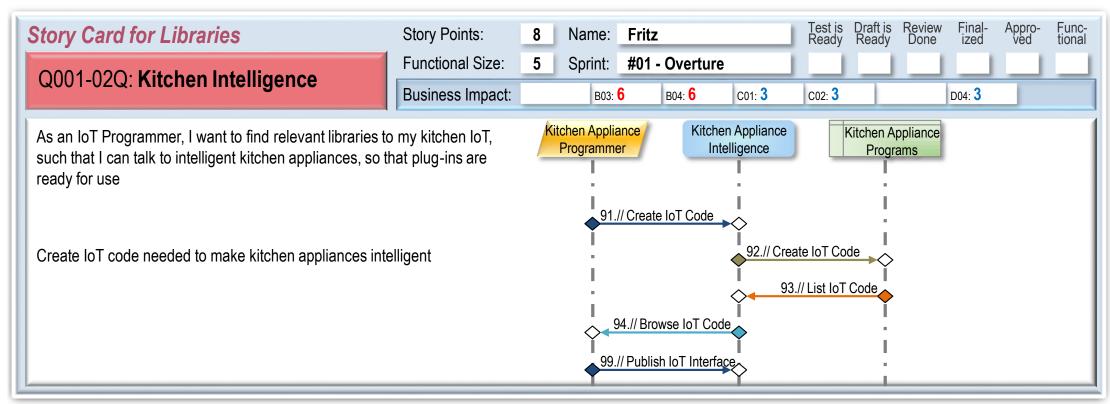
0.07

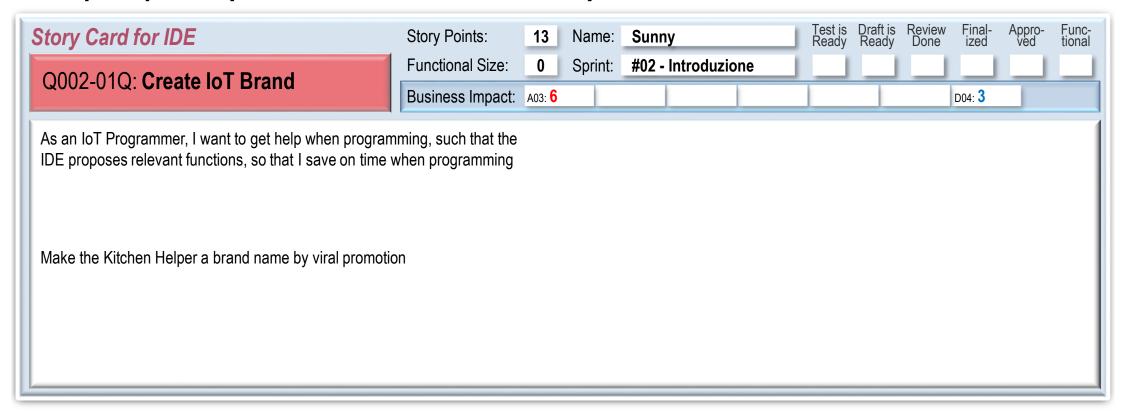
- Effort Prediction is based on previous projects
 - ISBSG data base
 - Reference projects
- Need to know
 - NFR Extension Factor for functional vs. non-functional Story Cards (work units)
 - Team Size
 - Sprint Duration

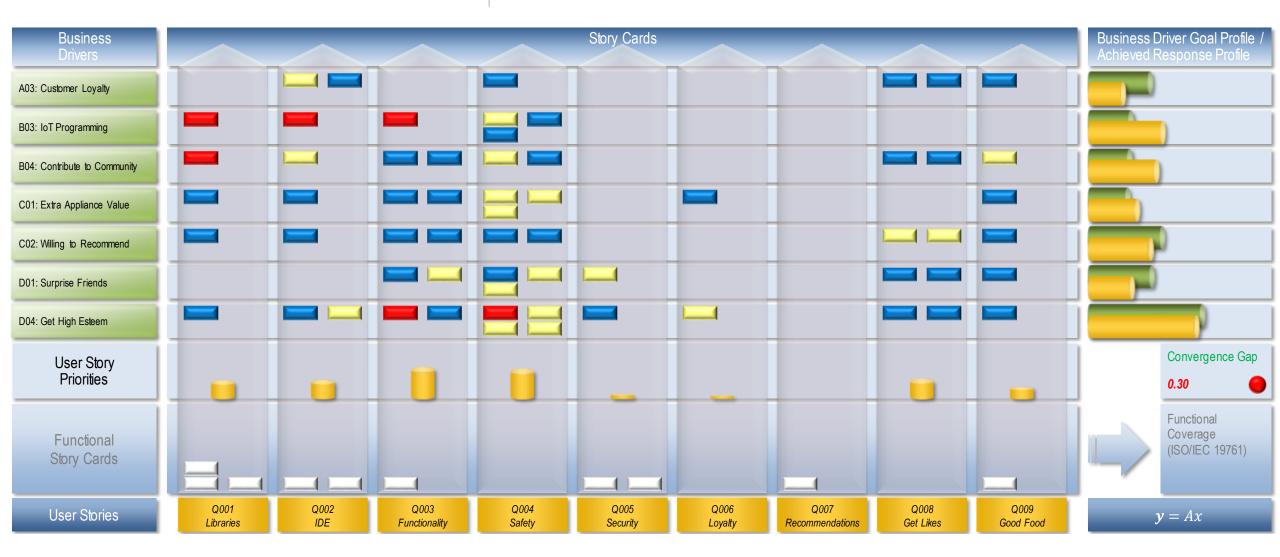

Effort Prediction	Reference	Manual	Selected	ISBSG
Project Delivery Rate (PDR):	4.50 h/CFP		4.50 h/CFP	4.50 h/CFP
NFR Extension Factor (CFP/Impact):	1.33%		1.33%	
Team Power:	5	7	7	
Average Sprint Duration:	13.3 Days	6.0 Days	6.0 Days	
Hours per Day:	8.0 h	8.0 h	8.0 h	
Reference Functionality:	60 CFP		60 CFP	
Predicted Functionality:		101 CFP	101 CFP	
Predicted Impact:	300		300	

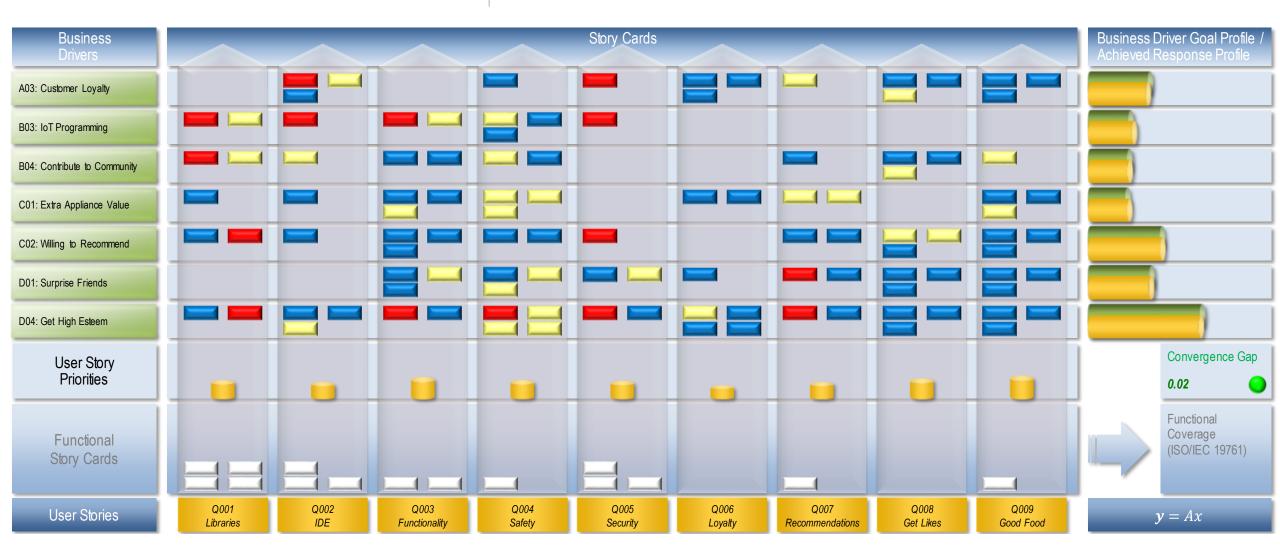
ŀ	Predicted Functional	FUR Size 101.00 CFP	PDR 4.50 h/CFP	Hours 455 h	NFR Siz 402.10 C	
	Non-functional	402.10 CFP	4.50 h/CFP	1809 h		
	Total	503.10 CFP		2264 h		
•		336	h/Sprint>	7	Sprints	


- Ask your team
 - Let them fill out Story Cards
 - Every User Stories yields 1 6
 Story Cards
- Every Story Card
 - fits into one sprint
 - has assigned
 - 1) Story Points, by the team
 - 2) Functional Size, automatically, and
 - 3) Business Impact, by the sponsor


Sample Functional Story Card


> Sample Non-Functional Story Card, containing some functionality

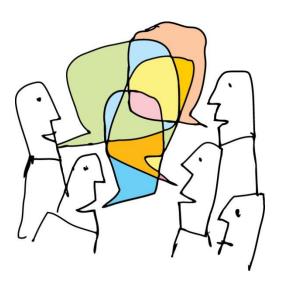

Sample purely Non-Functional Story Card


Cost Estimation by QFD – Initial Buglione-Trudel Matrix

Cost Estimation by QFD – Final Buglione-Trudel Matrix

Retrospective

- Development Team, and
- Sprints


	Sprints						Start Date:	2016-10-24	Montag, 24. Oktober 2016
	Sprint ID	Label	Description	Relax	Start Date		Duration	End Date	
1)	#01 - Overture	Overture	Planning & Initial Setup Sprint		2016-10-24	Montag, 24. Oktober 2016	8.0 Days	2016-11-04	Freitag, 4. November 2016
2)	#02 - Introduzione	Introduzione	Proof of Concept		2016-11-07	Montag, 7. November 2016	5.0 Days	2016-11-11	Freitag, 11. November 2016
3)	#03 - Allegretto	Allegretto	Functionality		2016-11-14	Montag, 14. November 2016	5.0 Days	2016-11-18	Freitag, 18. November 2016
4)	#04 - Funèbre	Funèbre	Doom day approaching		2016-11-21	Montag, 21. November 2016	5.0 Days	2016-11-25	Freitag, 25. November 2016
5)	#05 - Scherzo	Scherzo	Just some better stuff	3 Days	2016-12-01	Donnerstag, 1. Dezember 2016	7.0 Days	2016-12-09	Freitag, 9. Dezember 2016
6)	#06 - Alla Marcia	Alla Marcia	Now it goes forward		2016-12-12	Montag, 12. Dezember 2016	5.0 Days	2016-12-16	Freitag, 16. Dezember 2016
7)	#07 - Finale	Finale	Additional Stuff, not to be tracked		2016-12-19	Montag, 19. Dezember 2016	5.0 Days	2016-12-23	Freitag, 23. Dezember 2016
Add Row Del Row Average Sprint Duration: 5.7 Days									

- Measuring an IoT Project is straightforward
- > Estimation is difficult
 - Many Unknowns
 - Safety
 - Security
 - Reliability
 - Social Impact
 - Estimation means Simulation
 - Carrying out the project
 - Uncovering customer's needs

- Customer Orientation is key for estimation
 - What do the want?
 - What do they need?
- Involve the team!
- Quality Function Deployment is a mature technique to make customer's needs the base of your estimate
- > The ISBSG database converts QFD analysis into budget numbers

Questions?

