

4° International Conference on IT Data collection, Analysis and Benchmarking Los Angeles, CA (USA) – September 7, 2016

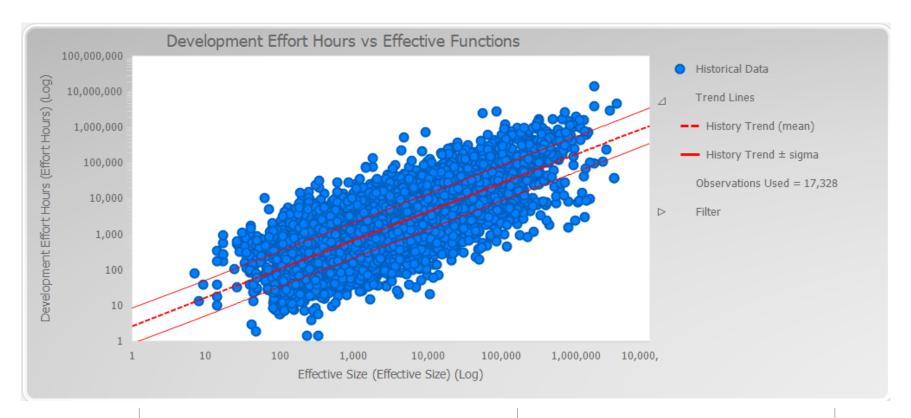
Data Driven Cost Estimating

And the Role of Industry and Private Data

Karen McRitchie Galorath Incorporated

And the Role of Industry and Private Data

In the Beginning



And the Role of Industry and Private Data

Now

And the Role of Industry and Private Data

Sources of Data

Public: Commercial databases, academic studies

Semipublic: Government databases

Private

And the Role of Industry and Private Data

Public versus Private – Comparisons Between...

Public Data

Can be **shared**

Supposedly diverse

Typically "narrow" data coverage

Project knowledge usually general

Several Categorical labels may fit

Private Data

Must be **sanitized**, if shareable at all

Decidedly **not diverse**

Typically "wider" data coverage

Project knowledge can be intimate

Categorical labels are more specific

And the Role of Industry and Private Data

Data Gathering – Beggars Can't Be Choosy

A List of "Nice to Haves"

Scope generally is considered most important; all else is negotiable. Though even scope can be traded away...

- **Platform**
- Application
- Scope
- Origin
- **Effort**
- Duration
- Cost
- Included labor
- Included activities
- **Defects**
- Staffing
- Complexity
- Extraordinary circumstances

And the Role of Industry and Private Data

Private Data — Bonus Data Collection Over Time

1. Up front:

To gauge scope creep from start to finish. Very important for calibration, since project estimates also are made <u>at the beginning</u>.

2. In process:

During development for management, for internal use in identifying issues and gauging progress

3. Post mortem:

Upon completing development, this becomes the bedrock for a project repository

During maintenance to gauge life- cycle costs

And the Role of Industry and Private Data

Private – The "Data Under Duress" Scenario

- "The Data..."

 "...may air our dirty laundry."
 - "...reveals our labor rates."
 - "... is not relevant or is different from other projects"
 - "...doesn't exist."
 - "(...doesn't exist, although we can't tell you that.)."
 - "...is not clean."
 - "...may threaten our bid strategy."

And the Role of Industry and Private Data

Data Sharing - Sunlight Is the Best Policy

- Your laundry isn't so dirty. Everyone knows developing software is hard and takes more time than planned.
- You don't need to reveal labor rates.
- Your competitors won't ever see your data.
- You have more data than you know, even if you don't record effort and scope.
- Let us save you time and try and clean it for you.
- Resultant data products help you bid more successfully.

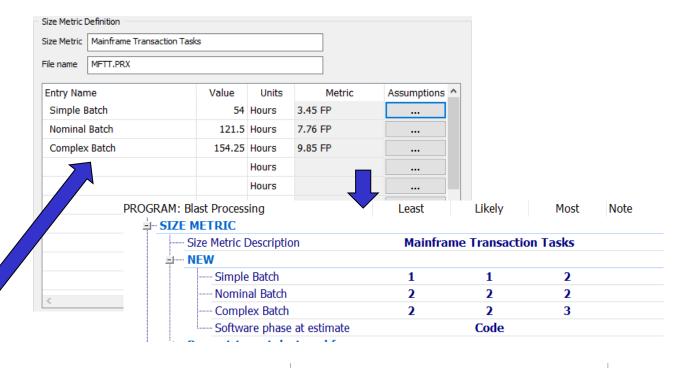
And the Role of Industry and Private Data

Data Aggregating – A Game of Least Common Denominator

Combining data, you rely on whatever all the data sets share.

>	Platform	>	Platform	>	Platform _	→	Platform
			Application		Application		
	Scope		Scope		Scope	\longrightarrow	Scope
	Origin		-		-		
	Effort		Effort		Effort -	\longrightarrow	Effort
	Duration				Duration		
			Cost		Cost		
	Included labor		Included labor				
					Included activities		
>	Defects	>	Defects				
_		>	Staffing				
	Complexity		Complexity		Complexity -	\longrightarrow	Complexity
	Circumstances		Circumstances		Circumstances -	\longrightarrow	Circumstances

Although with opportunity for side studies.

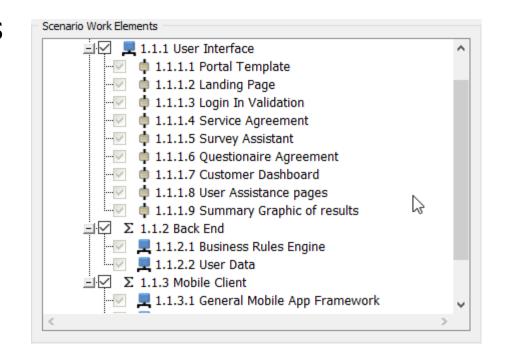


And the Role of Industry and Private Data

DATA Task Hours PX1-1758 133 28 PX1-3658 PX0-7883 57 PX1-1913 115 PX1-6462 112 53 PX0-4531 PX0-3619 210 PX1-7922 16 PX0-3973 126 PX0-4620 PX0-3311 192 PX0-2488 117 PX1-4917 130 PX1-3708 140 PX0-4318 159 PX0-5449 204 SUMMARY METRICS Max 210 154.25 75% 50% 121.5 25% 54 Min

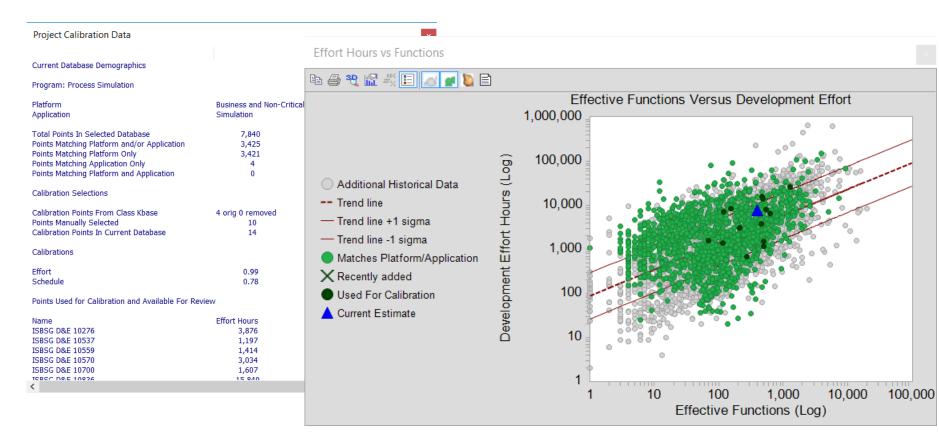
Task/Artifact Based Sizing - Creating Custom Metrics for Estimation

Create custom metrics by 'back firing' from accounting data. We support this offline and now directly in SEER-SEM.



And the Role of Industry and Private Data

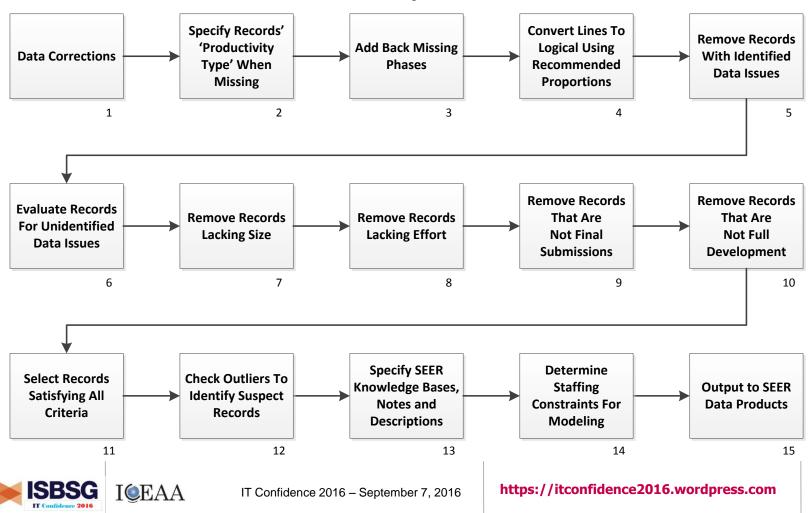
Meta-Data


- Capture Project Patterns for estimation
 - Consistent structures make comparing projects easier
 - Avoids errors of omission in estimation
 - Facilitates data collection by identifying common categories

And the Role of Industry and Private Data

Dynamic Calibration – making adjustments on the fly

And the Role of Industry and Private Data


Static Calibration/CER Generation

- Requires data prep and data processing
- Running the regressions is the easy part
- Be prepared to rinse and repeat

And the Role of Industry and Private Data

Process Shared Data For Analysis

And the Role of Industry and Private Data

Forensics

Schedule. Was it "stop and start"? Were there schedule constraints?

Resources. Were there hard-hitting resource constraints?

Volatility. Did requirements undergo extraordinary evolution?

Manager's Objectives. Was it to complete the project in *minimum time* or at *least cost*?

Effort. Are effort figures actually derived from cost figures?

When creating the estimate --- adjustments for *extraordinary* conditions may be possible *within the software estimating model*.

And the Role of Industry and Private Data

Exploratory Data Analysis (ANOVA or regressions)

Helps to determine highest explanatories and functional forms.

VARIABLE	ESTIMATED		
NAME	COEFFICIENT	T-RATIO	P-VALUE DEFINITION OF VARIABLE
LR2	0.2842	5.52	0 1 when resource level is 2 or above * log UFPs
R2_DUM	-1.7423	-6.25	0 1 when resource level is 2 or above
LR4	0.0436	2.15	0.032 1 when resource level is 4 * log UFPs
FOURGL	-0.4255	-8.72	0 1 when 4GL language is used
LNUFP	0.6960	29.36	0 log of UFPs
PLAN	0.6842	2.38	0.017 1 when the Plan phase is included, according to revised list of phases
BUILD	-1.3634	-3.31	0.001 1 when the Build phase is included, according to revised list of phases
TST	1.1291	3.26	0.001 1 when the Test phase is included, according to revised list of phases
IMPL2	0.0907	1.68	0.094 1 when the Implementation phase is included, according to ORIGINAL list
LPLAN	-0.1511	-2.79	0.005 PLAN * log of UFPs
LSPEC	0.1249	7.33	0 SPEC * log of UFPs
LBUILD	0.1721	2.10	0.036 BUILD * log of UFPs
LTEST	-0.2344	-3.29	0.001 LTEST * log of UFPs
BUSINESS	-0.2778	-5.87	0 1 for non-critical Business projects
CLISERV	-0.1593	-1.76	0.078 1 for non-critical Client-Server projects
CONSTANT	4.0837	33.85	0

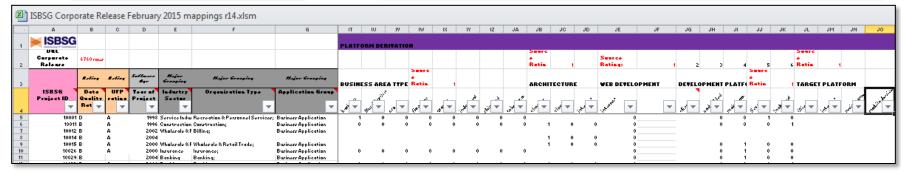
Principal Components Analysis also is useful for reducing the number of variables.

Typical forms:

$$Effort = a * size entropy$$

$$Duration = b * size duration entropy$$

And the Role of Industry and Private Data


Classification Automation

Automated classification:

- Enables consistency
- Reduces mistakes

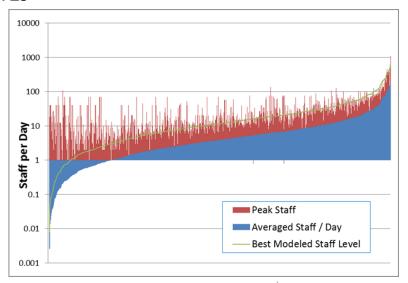
	Gusthi ^{z z} Cri	dights		
BusiMissCrit	1948	209	189	558
business		2408	257	720
Client			706	303
clientsr				1755

SECTOR /	ORG / APPLICATION I	LOOKUP TABLE		2	3 4	5	6 7	8 9 10
Industry Sector	Organisation Type	Application Group	Application Type					Magaza dina
	All industry organization typ All-purpose; All-purpose;	Business Application Business Application Business Application	Security/Authentication; Document management; Document management;Job, case,	All 1 All-purpose; All-purpose;	1 1			1
Banking	All-purpose; Agriculture, Forestry, Fishir	Real-Time Application Business Application	Telecom & network management; Management Information System;	All-purpose;Real-Ti BankingAgri	ime Application 1	nTelecom & net	work management;	1
Banking	Banking;			BankingBanking;				
Banking	Banking;	Business Application		BankingBan	1			
Banking	Banking;	Business Application	Application Security Control;	Ba 1				
Banking	Banking;	Business Application	Auditing Management;	BankingBan	1			
Banking	Banking;	Business Application	Cards and Payments;	Ba 1				1
Banking	Banking;	Business Application	Catalogue/register of things or ever	r BankingBan	1			
Banking	Banking;	Business Application	Client Server;	BankingBanking;Bo	usiness Applic	1		
Banking	Banking;	Business Application	Client/Server Customer Service app	; BankingBanking;Bi	usiness Applic	1		
Banking	Banking;	Business Application	Customer billing/relationship manag	g BankingBan	1			

And the Role of Industry and Private Data

Typical Normalizations

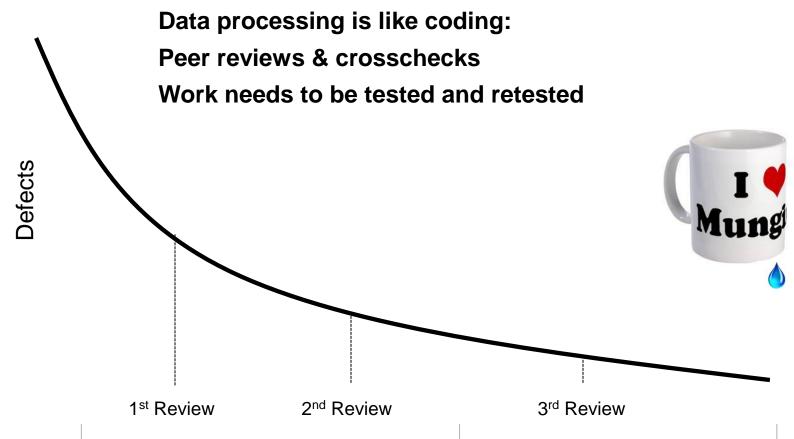
- Adjustment to Line of Code or Function Point measures
 - Methods vary
 - For private data, frequently no adjustment is made if customer prefers a given metric "flavor", we use it
- Adjustments to re-include missing activities or labor
 - Typically using simple proportions derived from other projects in the sample
- Inferring peak staffing
 - Informed by average staffing, when known or as calculated (example on next page)



And the Role of Industry and Private Data

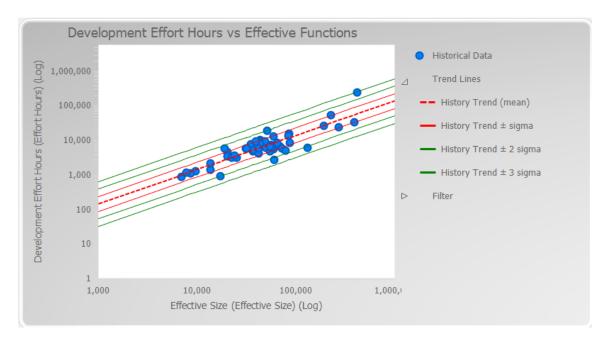
Peak Staff - Significant, Often Missing

Staffing constraints have a significant effect on estimating; when not specified, they should be inferred when possible:


- Use reported peak staff when available
- When not reported, based on analysis, specify peak staff at X * average staff with no constraints below Y FTEs

And the Role of Industry and Private Data

Oversight



And the Role of Industry and Private Data

Sanity Checks

SEER Metrics is used to plot data within probability bands. Points outside 2 sigma are examined.

And the Role of Industry and Private Data

More vs. Less Data – Double-Edged Sword

Less Data

Harder to spot outliers

Easier to explain them

Harder to systemically correct

More Data

Easier to spot outliers

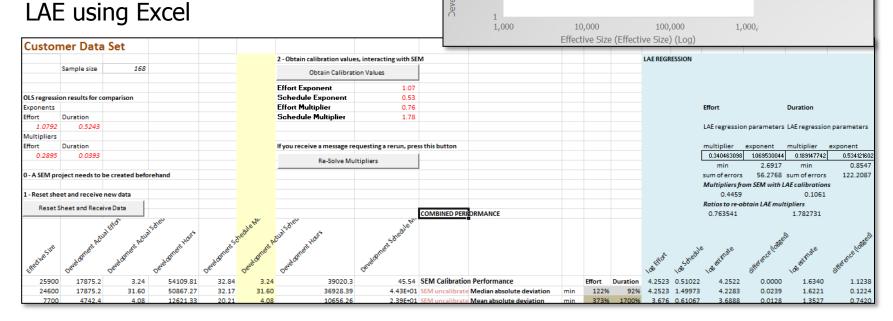
Harder to explain them

Easier to systemically correct

And the Role of Industry and Private Data

1,000,000

100,000


10,000

1,000

Development Effort Hours vs Effective Functions

Calibration Automation

Automation for solving form y=a*s^b OLS using SEER Metrics

Historical Data

Trend Lines

 $r^2 = 0.78$

Filter

History Trend (mean)History Trend ± sigma

 $y = 0.1573x^0.1573$

And the Role of Industry and Private Data

Measuring Calibration Efficacy

Calibration efficacy can be:

- Specific "Does this stratification produce enough predictions within X percent?"
- Relative "Does another stratification work better while capturing the requisite estimating scenarios?"

Stratification A				Stratification B			
		Effort	Duration			Effort	Duration*
Median absolute deviation	min	51%	78%	Median absolute deviation	min	37%	96%
Mean absolute deviation	min	80%	163%	Mean absolute deviation	min	48%	146%
Standard error (normalized)	min	88%	75%	Standard error (normalized)	min	90%	53%
Prediction within 10%	max	6%	13%	Prediction within 10%	max	18%	5%
Prediction within 25%	max	18%	25%	Prediction within 25%	max	34%	22%
R-squared	max	66%	14%	R-squared	max	94%	0%
Number of records:		109		Number of rec	ords:	103	
		Effort	Duration			Effort	Duration
Multiplier		0.95	2.04	Multiplier		0.90	5.04
Exponent		0.84	0.23	Exponent		0.93	0.10
Original multiplier		4.65	2.19	Original multiplier		2.06	23.20
OLS Multiplier		4.66	1.51	OLS Multiplier		3.65	23.20
OLS Exponent		0.83	0.26	OLS Exponent		0.89	0.05

And the Role of Industry and Private Data

Typical Statistics

Mean Magnitude of Relative Error (MMRE)

Average Estimate Ratio

Median Estimate Ratio

Standard Deviation

Prediction (x)

R-squared

Other statistics

Percentage variation between actual and estimate with actual as divisor. *Closer to zero the better.*

The average of (actual / estimate) ratios. Closer to one the better.

The median of (actual / estimate) ratios. Closer to one the better.

The standard deviation of estimate vs. actual variances. *Closer to zero the better.*

The percent of estimates falling within x% of actual outcomes. *Closer to 100% the better.*

Goodness of fit. (The goal is to purely "fit the data" and so this is a good measure.) *Closer to one the better.*

Chow for structural breaks (such as may occur as scope grows), F test to detect difference between two samples (such as estimate versus actual),

And the Role of Industry and Private Data

Side Studies

An example of the studies possible, in addition to classic size-effort and duration-effort relationships:

- 1. Size growth studies, to understand estimated versus actual system size
- 2. The impact of staffing on project productivity
- 3. Determinants of project duration
- 4. Ability of project requirements to determine effort and duration
- 5. Variations in productivity by program, division/contractor, maturity rating, programming language, toolset, etc.
- 6. Determinants of project phases' relative durations
- Standardized, multiple tags for projects, yielding more descriptive information and more data for specific queries
- 8. Ability to predict maintenance and sustainment
- 9. What taxonomy has the best explanatory versus descriptive power?

And the Role of Industry and Private Data

Private/Local Data

- Use to shape the estimation prociess
 - Sizing
 - Project Patterns
 - Productivity Tuning
 - Economic Factors
 - Estimate Catalogs
- Focus is consistency, repeatibility and accuracy

Public/Industry Data

- Use to target major trends
 - Calibration/CER Generation
 - Productivity Benchmarking
- Sanity Check Your Estimate
- Vendor/Competitor Evaluation
- Evaluate Industry Demographics

And the Role of Industry and Private Data

Applying Data To Estimation

- It's not a lights out process
 - Requires analysts, SMEs, humans to process evaluate and identify where it can add value
- Getting started can be slow and bumpy
 - As the process is repeated, it gets easier
 - Automate as much as possible
- Revisit processes
- Meausre the benefits
 - Accuracy improvements, estimate turnaround, confidence in estimates

