
Application of mutual information-based sequential
feature selection to ISBSG mixed data

Marta Fernández-Diego1 &

Fernando González-Ladrón-de-Guevara1

Published online: 27 October 2017
Springer Science+Business Media, LLC 2017

Abstract There is still little research work focused on feature selection (FS) techniques
including both categorical and continuous features in Software Development Effort
Estimation (SDEE) literature. This paper addresses the problem of selecting the most
relevant features from ISBSG (International Software Benchmarking Standards Group)
dataset to be used in SDEE. The aim is to show the usefulness of splitting the ranked list
of features provided by a mutual information-based sequential FS approach in two,
regarding categorical and continuous features. These lists are later recombined according
to the accuracy of a case-based reasoning model. Thus, four FS algorithms are compared
using a complete dataset with 621 projects and 12 features from ISBSG. On the one hand,
two algorithms just consider the relevance, while the remaining two follow the criterion of
maximizing relevance and also minimizing redundancy between any independent feature
and the already selected features. On the other hand, the algorithms that do not discrim-
inate between continuous and categorical features consider just one list, whereas those
that differentiate them use two lists that are later combined. As a result, the algorithms that
use two lists present better performance than those algorithms that use one list. Thus, it is
meaningful to consider two different lists of features so that the categorical features may
be selected more frequently. We also suggest promoting the usage of Application Group,
Project Elapsed Time, and First Data Base System features with preference over the more
frequently used Development Type, Language Type, and Development Platform.

Keywords Feature selection .Mutual information . ISBSG . Software development effort
estimation . k-nearest neighbor

Software Qual J (2018) 26:1299–1325
https://doi.org/10.1007/s11219-017-9391-5

* Marta Fernández-Diego
marferdi@omp.upv.es

Fernando González-Ladrón-de-Guevara
fgonzal@omp.upv.es

1 Department of Business Organisation, Universitat Politècnica de València, 46022 Valencia, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-017-9391-5&domain=pdf
mailto:marferdi@omp.upv.es

1 Introduction

Generally, software development effort estimation (SDEE) requires data in a mathematically
feasible format through Data Pre-processing (DPP). DPP techniques consist of data reduction,
data projection, and missing data treatment. Data reduction aims to decrease the size of the
datasets by means of feature selection (FS) or case selection (Huang et al. 2015). FS reduces the
effects of high dimensionality on a dataset by selecting an optimum subset of features and
removing the rest of the features from further analysis (Awada et al. 2012). The removed
features are either irrelevant to the problem at hand or redundant when compared to the features
within the optimum subset. Besides, the computation cost of subsequent analysis is reduced.

Anyway, there is little research work focused on DPP and specially FS techniques in the
SDEE literature (Huang et al. 2015). The first attempt of applying FS to parametric SDEE
models (Chen et al. 2005) showed that it can dramatically improve cost estimation. In (Liu
et al. 2013), the Desharnais dataset is used for experiments but other datasets such as ISBSG
should be considered too.

Existing FS approaches are mainly designed for classification problems with categorical or
continuous features (Liu and Yu 2005). However, in SDEE, the data collected include both
categorical and continuous features. One approach to deal with mixed data is to perform a
discretization for continuous features (Hall and Holmes 2003; Ferreira and Figueiredo 2011).

Hence, this paper aims to address the problem of selecting the most relevant features from
ISBSG (International Software Benchmarking Standards Group) dataset to be used in SDEE.
To deal with mixed features, this paper follows the approach presented by Doquire and
Verleysen (2011) to obtain a ranked list of features. This list is then split into two regarding
the continuous and categorical features and next recombined according to the accuracy of a
case-based reasoning (CBR) model.

In the first part of this paper, the theoretical background is presented along with the
description of the four proposed FS algorithms. Next, the methodology is considered, followed
by the results obtained when applying the different FS algorithms regarding their performance
and the resulted selected features. Finally, the paper concludes with a brief discussion on the
threats to validity, conclusions, and future lines of research.

2 Mutual information-based feature selection methods

2.1 Background

FS is the focus of research in areas of application such as clustering or classification and is
used in various domains including software effort estimation (Song and Shepperd 2007). The
objective of feature selection is threefold: improving the predictors’ performance, providing
faster and more cost-effective predictors, and facilitating a better understanding of the under-
lying process that generated the data (Guyon and Elisseeff 2003).

FS aims to choose a subset of the original features according to a selection criterion, so that
the redundancy and noise in the original feature set is minimized (Liu et al. 2014). On the one
hand, by eliminating irrelevant features, the remaining ones are useful for estimation purposes
(Dejaeger et al. 2012). On the other hand, redundant features are those features that depend on
other features (Liu et al. 2013). Hence, it is advised to focus on data quality rather than

1300 Software Qual J (2018) 26:1299–1325

collecting as many predictive features as possible. The aim is to build an estimation model that
performs better than that built with the original features.

The search strategy and the evaluation criteria work together to find the best feature subset
(Gupta et al. 2014). According to the search strategy, global (Somol et al. 2004), heuristic
(Dash and Liu 2003), and random (Oh et al. 2004) strategies were introduced in the literature
(Kabir et al. 2011). In this regard, the search engine can be divided into three categories:
exhaustive, heuristic, and non-deterministic search engines (Guyon and Elisseeff 2003). With
respect to the evaluation criteria, FS approaches can be classified into three categories (Kabir
et al. 2011): the filter, the wrapper, and the hybrid approach.

FS methods that make use of a proxy measure to estimate utility are termed Bfilter^
approaches. Filter-based FS methods rely on various measures of the training data, such as
distance, information, dependency, and consistency to measure the correlation between fea-
tures (Liu and Motoda 2012). FS methods that assess feature utility with respect to a given
classifier or clustering method are referred to as Bwrapper^ approaches (Kohavi and John
1997; Mandal and Mukhopadhyay 2013). Wrapper methods differ from filter-based FS in that
they use a learner when evaluating the features, either separately or as subsets.

Filter methods have good generalization properties and are computationally cheaper than the
wrapper approaches but may be less effective at decreasing dimensionality. Usually, wrappers
can yield high fitting accuracy at the cost of high computational complexity (especially for subset
evaluation) and low generalization of the selected features to other conditions (Li et al. 2009). In
the hybrid approach, features are first filtered and then determined by the wrapper model (Hsu
et al. 2011). It is often found that the hybrid approach is capable of locating a good solution.

In filter methods, information theory (Shannon 1949) has been widely applied. Measures
such as mutual information (MI), interaction information, conditional mutual information, and
joint mutual information can be used to compute the relevance of features (Bennasar et al.
2015). MI is a criterion from the information theory which has proven to be very efficient in
feature selection (Battiti 1994; Fleuret 2004) mainly because it is able to detect non-linear
relationships between variables. MI can be expressed as the amount of information provided
by variable X which reduces the uncertainty of variable Y, i.e., the amount of information both
variables share. It is formally defined as follows:

I X ; Yð Þ ¼ H Xð Þ þ H Yð Þ−H X ; Yð Þ ð1Þ
where H(X) is the entropy with Shannon definition given by

H Xð Þ ¼ −∫ f X xð Þlog f X xð Þdx ð2Þ
with fX being the probability density function of X. H(X, Y) is the entropy of the joint variable
(X, Y) defined in the same way.

MI is symmetric; hence : I X ; Yð Þ ¼ I Y ;Xð Þ ð3Þ
I(X; Y) = 0 if and only if X and Y are independent random variables.

I X ; Yð Þ is bounded by the individual entropies of X and Y : I X ; Yð Þ≤min H Xð Þ;H Yð Þf g ð4Þ
MI can be reformulated as

I X ; Yð Þ ¼ ∬ f X ;Y x; yð Þlog f X ;Y x; yð Þ
f X xð Þ f Y yð Þ dxdy ð5Þ

Software Qual J (2018) 26:1299–1325 1301

Due to the fact that in practice none of the probability density functions fX, fY, and fX, Y are
known, MI cannot be computed analytically but has to be estimated from the data set. Namely,
when at least one of the variables X and Y is continuous, their mutual information I(X; Y) is
hard to compute, because it is often difficult to compute the integral in the continuous space
based on a limited number of samples. One solution is to incorporate data discretization as a
pre-processing step (Peng et al. 2005).

MI is used as a measure of both the relevance of a feature which is to be maximized and
the feature redundancy which is to be minimized (Mandal and Mukhopadhyay 2013). It is
mostly used because it does not require to assume knowing the sample distribution, does
not need to transform the data, and can measure the degree of uncertainty between features
in a quantified form.

For example, Battiti (1994) proposed a greedy selection method called MIFS (Mutual
Information Feature Selection) that selects the feature that maximizes the information about the
class, corrected by subtracting a quantity proportional to the average MI. Kwak and Choi
(2002) proposed a method called MIFS-U (Mutual Information Feature Selector Under
Uniform Information Distribution) that makes a better estimation of MI between input features
and output classes. Nonetheless, a user-defined parameter is used in MIFS and MIFS-U, and it
may cause errors in results.

To avoid this kind of error, mRMR (Minimum Redundancy Maximum Relevance) method
(Peng et al. 2005) is proposed. In mRMR, the user-defined parameter is replaced by the
reciprocal of selected feature numbers. However, in the presence of many irrelevant and
redundant features, mRMR has limitations. NIMFS (Normalized Mutual Information Feature
Selection) method (Estévez et al. 2009) is then proposed by defining the normalized MI as a
measure of redundancy between one feature and the selected subset. INMIFS (Improved
NMIFS) method (Vinh et al. 2010) also restricts the value of relevance part into [0,1] to
balance the relevance and redundancy components.

The problem of the MI-based correlation measure is that it can only be defined between
continuous or categorical features. Thus, these FS methods are designed to work only with
continuous or categorical features. Actual data, however, usually include mixed features that
include both categorical and continuous features, for example, in SDEE. A simple approach to
handle the problem of mixed features is to turn it into a discrete or continuous one, but both
approaches have drawbacks.

In their method, Kwak and Choi (2002) already dealt with between mixed features, with
the assumption that all samples had the same probability of occurrence. They divided the
continuous input feature space into several discrete partitions and calculated the MI using
the definitions for discrete cases. In (Liu et al. 2013), a new method (C-mRMR) for
calculating MI between mixed features is proposed with the latter assumption removed.
Since MI tends to choose features with more values, by normalizing this correlation
measure, the mRMR criteria is improved to deal with mixed data. In order to eliminate
the different influences, all types of features (numerical, ordinal, and nominal) are nor-
malized in (Li et al. 2009) where the MICBR (Mutual Information Feature Selector for
Case Based Reasoning) algorithm proposed consists of an inner stage at which the
classical MIFS (Battiti 1994) is used to rank the features and an outer stage which fixes
the number of features by minimizing the error. Finally, the approach proposed by Doquire
and Verleysen (2011) to deal with mixed data is different: the features of each type are first
ranked independently and two lists are produced. These lists are then combined according
to the accuracy of a classifier.

1302 Software Qual J (2018) 26:1299–1325

2.2 Proposed feature selection algorithms

The proposed FS algorithms use MI as a measure of both the relevance of a feature and its
redundancy. The function information.gain from FSelector package (Romanski and Kotthoff
2014) has been employed in this paper to obtain a measure of MI. Its syntax is
information.gain(formula, data) where formula is a symbolic description of a model and data
represents the data to be processed. In fact, this function is calculated as H(Class) +H(Attri-
bute) −H(Class, Attribute). The FSelector package in turn imports the package Entropy
(Hausser and Strimmer 2009) that implements various estimators of the Shannon entropy.
The function information.gain internally discretizes the continuous features, as a previous step,
by means of the Fayyad and Irani’s Minimum Description Length method (Fayyad and Irani
1993) that is one of the most commonly used discretization methods in machine learning
(Witten et al. 2011). This univariate supervised discretization method combines an entropy-
based splitting criterion with a minimum description length stopping criterion to determine the
best cutpoint for splitting an interval (Lustgarten et al. 2008).

The major difference between the proposed FS algorithms and the approach followed in
(Doquire and Verleysen 2011) consists on the application of this common MI measure to
construct the ranking of both continuous and categorical features, provided that the continuous
features are first discretized. As a precedent, the mrMR method has been proved to attain
adequate results with a previous step of feature discretization (Ferreira and Figueiredo 2011).

The FS algorithms considered in this work are depicted in Fig. 1 and described below:

& MI_1L. This algorithm employs a forward search strategy that is a quite simple and fast
solution to search the feature space and build the set of selected features. MI_1L consists in
adding, at each step, the best possible feature according to a specific criterion: The features are
ranked according to the relevancewith respect to the dependent feature usingMI as ameasure.
This ranking is obtained once on the whole dataset. Then, all features are tested sequentially
considering the aforementioned ranked list (1L). The inclusion of the features in the set of
selected features is determined by a predictivemodel: if the inclusion of a feature improves the
accuracy of the previous CBR model in terms of MMRE, this feature will be added to the list
of selected features; otherwise, it will be excluded. Therefore, this algorithm combines aspects
of a filter method that provides a feature ranking and is used as a pre-processing step, and a
wrapper method that makes use of a predictive model to assess feature subsets.

& mRMR_1L. Nevertheless, it could be argued that a feature very relevant to the dependent
feature may be useless when it conveys similar information to that provided by another
selected feature. Thus, it should not be selected. To solve this, at each step, we can search
for the feature that maximizes the difference between its relevance and its redundancy with
the already selected features. Indeed, the only difference with MI_1L algorithm is that the
features are initially ranked according to mRMR criterion (Minimum Redundancy Max-
imum Relevance (Peng et al. 2005)). For feature Xi(i ∉ S) given a dependent feature Y,
where S is the set of indices of already selected features, mRMR can be expressed as

mRMR Xið Þ ¼ I Xi; Yð Þ− 1

Sj j ∑jϵSI Xi;Xjð Þ ð6Þ

where I(Xi; Y) = D(Xi) is the estimated relevance and 1
Sj j ∑jϵSI Xi;Xjð Þ ¼ R Xið Þ is the

estimated redundancy.

Software Qual J (2018) 26:1299–1325 1303

In other words, if a subset of features has already been selected, the next unselected feature
Xi to be tested is the one which maximizes mRMR. The relevance D is obtained as the MI
between the new feature Xi and the dependent feature Y, while the redundancy R can be
calculated as the average MI between the new feature and each of the already selected features
(Xj ∈ S). This ranking will be used later by the greedy forward search strategy.

& MI_2L. Due to the fact that the model involves categorical and continuous features, it
seems interesting to make a distinction between them. Consequently, the features of each
type are ranked separately in two independent lists where only the relevance, based on the
same MI measure, is taking into account. These lists are then combined according to the
accuracy of a CBR model. Thus, both the top-ranked categorical and continuous features
are considered at each step. The one whose addition to the current set of features leads to
the best prediction accuracy of the CBR model is chosen and removed from its list.
Anyway, the discarded feature still has the possibility to compete with the next best feature
of the other list. This wrapper procedure ends when all features have been tested.

1304 Software Qual J (2018) 26:1299–1325

Fig. 1 Block diagram of proposed FS algorithms

& mRMR_2L. This algorithm uses the mRMR criterion and also discriminates between
categorical and continuous variables.

The block diagram of Fig. 1 serves to contrast the aforementioned algorithms.
On the one hand, the algorithms MI_1L and MI_2L just consider the relevance (MI)

of any independent feature with respect to the dependent feature (NWEL1), while
mRMR_1L and mRMR_2L follow the mRMR criterion of maximizing relevance and
also minimizing redundancy between any independent feature and the already selected
features. On the other hand, the algorithms that do not discriminate between continuous
and categorical features consider just one list (MI_1L and mRMR_1L), whereas those
that discriminate between them use two lists (MI_2L and mRMR_2L) following
(Doquire and Verleysen 2011).

3 Methodology

Firstly, the pre-processing procedure on ISBSG Release 12 is described in this section, leading
to a data subset that includes 621 projects and 12 features. Then, the four proposed FS
algorithms, introduced in Section 2.2, are compared to select the most relevant and non-
redundant mixed features for SDEE. MI_1L and MI_2L algorithms just maximize relevance,
while mRMR_1L and mRMR_2L algorithms minimize redundancy too. MI_2L and
mRMR_2L use two lists regarding continuous and categorical features. Additionally, a greedy
forward feature selection algorithm is introduced as a baseline.

All statistical computations and graphics were created with the open source software
package R (R Core Team 2015) using version 3.2.3 with additional packages (FSelector,
gdata, ggplot2, dplyr, tidyr, and VIM).

3.1 Data Pre-processing procedure

3.1.1 ISBSG

The International Software Benchmarking Standards Group (ISBSG 2013a) designed and
maintains two international public repositories (Software Development & Enhancement and
Maintenance & Support) to improve management of IT resources by both business and
government. The ISBSG dataset offers a wealth of information about completed software
projects, regarding practices, tools, and methodologies, accompanied by process and product
data, to be used in benchmarking, monitoring, quality control, and performance management
purposes during the software development process (Top et al. 2011). However, there are some
issues that need to be considered when using it (Fernández-Diego and González-Ladrón-de-
Guevara 2014). The experimental work in this paper is based on ISBSG Release 12 which
includes 6006 projects and 126 features.

3.1.2 Filtering

Given that ISBSG is a large and heterogeneous dataset, a data preparation process is
required before applying any analysis. The filtering rules in Table 1 were adapted from
(Lokan and Mendes 2009a).

Software Qual J (2018) 26:1299–1325 1305

3.1.3 Initial set of features

Three effort features are recorded in the ISBSG dataset. The fundamental feature is Summary
Work Effort (SWE), measured in staff hours. It is the total effort for the project, as reported by
the contributing organization, but SWE could not cover all life cycle phases of the project. The
other two effort features take into account differences in whose effort is included in SWE, and
which life cycle phases are included in SWE: Normalised Effort is ISBSG’s estimate of the
total effort when any Bmissing^ phases are added. However, there can still be some inconsis-
tency between projects, even when using Normalised Effort, because projects report effort
involving different participants and this is indicated by the variable Resource Level. Level 1
means that effort is reported for the development team only, levels 2 and 3 add effort for
development team support and computer operations involvement, and level 4 adds effort for
end users and clients. Consequently, Normalised Work Effort Level 1 (NWEL1) is the
normalized effort for the development team only. Hence, to ensure maximum consistency,
González-Ladrón-de-Guevara et al. (2016) recommend the use of NWEL1 as dependent
variable, which is the one selected in this paper.

For a start, this study focuses on the 20 ISBSG features most frequently used as indepen-
dent variables in effort estimation models according to (González-Ladrón-de-Guevara et al.
2016). However, since the experimental work is based on ISBSG R12, two features, Appli-
cation Type (AT) and Organization Type (OT) have been replaced by their respective derived
features Application Group (AG) and Industry Sector (IS). AT identifies the type of application
within the business area and organization/industry type being addressed by the project, while
OT identifies the type of organization that submitted the project. When using previous ISBSG
releases, the values of these variables are usually regrouped. This categorization, however,
could be complex. Thus, the new features in R12, AG, and IS intend to group the values of AT
and OT into a predefined set of values to overcome the aforementioned handicap for both
researchers and practitioners.

Secondly, from this initial set of the 20 most used features, those with missing values larger
than 60% have been excluded from further analysis: Average Team Size (87.31%), Business
Area Type (70.49%), Max Team Size (62.47%), and Input count, Output count, Enquiry count,
File count, and Interface count (61.68%). During the pre-processing stage, it is a common

Table 1 Selection criteria for effort concerns

Selection criteria Projects remaining Projects removed

High data quality
High general data qualitya 5558 448
High functional size qualityb 3935 1623
Comparable effort definition
Development team effort knownc 3215 720
Effort across the whole life cycled 2249 966
Comparable size definition
IFPUG version 4.0 or latere 1884 365

a ISBSG <- ISBSG[ISBSG$Data.Quality.Rating %in% c(BA^,BB^),]
b ISBSG <- ISBSG[ISBSG$UFP.rating %in% c(BA^,BB^),]
c ISBSG <- ISBSG[!is.na(ISBSG[[BNormalised.Work.Effort.Level.1^]]),]
d ISBSG <- ISBSG[ISBSG$Normalised.Work.Effort.Level.1 == ISBSG$Summary.Work.Effort,]
e ISBSG <- ISBSG[ISBSG$Count.Approach==BIFPUG 4+^,]

1306 Software Qual J (2018) 26:1299–1325

practice to prune features due to a high level of missing data (Huang et al. 2008; Jeffery et al.
2001; Lokan 2005; Mendes et al. 2005) when no imputation treatment is performed.

Thirdly, the selection criteria in Table 1 that provides a comparable definition for effort
ensures, on the one hand, that NWEL1 has no missing values and on the other hand, that all
values of feature Resource Level are equal to one. For this reason, Resource Level also
dropped at this stage. Indeed, this variable is more often used in the filtering process than in
the estimation model itself (González-Ladrón-de-Guevara et al. 2016). Hence, the subset
includes 1884 projects with 11 independent variables and the dependent one (NWEL1).

Finally, projects with any missing value in the independent variables were discarded. After
the pre-processing stage, the resulting dataset includes 621 projects and 12 features that are
shown in Table 2. The independent features are as follows:

& Adjusted Function Points (AFP) is the adjusted size for IFPUG, NESMA, FiSMA, and
MARK II counts. The functional size is adjusted by a Value Adjustment Factor and the
resultant adjusted size is reported as AFP. It has a mean value of 461.7 and a standard
deviation of 902.8 adjusted function points.

& Application Group (AG) is a derived field that groups Application Type of the project into
a single value of a defined set: Business Application (94.85%), Real-Time Application
(3.06%), Mathematically Intensive Application (1.29%), and Infrastructure Software
(0.80%).

& 1st Data Base System (1DBS) is the primary database used in a project. This feature will
be considered later when dealing with categorization.

& Development Platform (DP) defines the primary development platform, determined by the
operating system used. Each project is classified as PC (16.75%), Mid Range (9.18%),
Mainframe (34.30%), orMulti-platform (39.77%). This variable is clearly determined at the
early stage of any software project. DP is the best indicator of the environment in which a
project is developed and does not refer specifically to the hardware platform (Hill 2010).

& Development Type (DT) describes whether the development was a New Development
(41.22%), Enhancement (56.68%), or a Re-development (2.1%). A re-development is
similar to a new development, using new technologies to replace or upgrade an existing
software product. This variable has no missing values. It is one of the most important
criteria for selecting projects (Lokan and Mendes 2012) and is suggested by ISBSG
guidelines for use in the estimation process as well as for benchmarking (ISBSG
2013b). Empirical evidence exists that the development type influences project effort
(Huang et al. 2008; Moses et al. 2006).

& Functional Size (FSZ) represented the size in AFP up to and including Release 8. Since
Release 9 (released in 2004), it represents the unadjusted function point count (UFP),
which reflects the specific countable functionality provided to the user by the project or
application (ISBSG 2013c) before any adjustment. FSZ and AFP have been reported
separately in the dataset since Release 9. FSZ has a mean of 449.8, and a standard
deviation of 785.8 function points.

& Industry Sector (IS) identifies the type of organization that submitted the project. The
possible of values of IS are as follows: Banking (10.63%), Communication (10.14%),
Construction (1.29%), Electronics & Computers (1.77%), Financial (4.35%), Government
(28.66%), Insurance (16.59%), Manufacturing (9.02%), Medical & Health Care (0.97%),
Mining (0.81%), Professional Services (2.42%), Service Industry (9.50%), Utilities
(2.25%), Wholesale & Retail (1.61%).

Software Qual J (2018) 26:1299–1325 1307

T
ab

le
2

Se
le
ct
ed

IS
B
SG

fe
at
ur
es

Fe
at
ur
e

Id
en
tif
ie
r

Ty
pe

St
at
es

A
dj
us
te
d
Fu

nc
tio

n
Po

in
ts

A
FP

C
on
tin

uo
us

[6
..1
75
18
]
A
FP

A
pp
lic
at
io
n
G
ro
up

A
G

C
at
eg
or
ic
al

B
us
in
es
s
A
pp
lic
at
io
n,

In
fr
as
tr
uc
tu
re

So
ft
w
ar
e,
M
at
he
m
at
ic
al
ly
-I
nt
en
si
ve

A
pp
lic
at
io
n,

R
ea
l-
T
im

e
A
pp
lic
at
io
n

1s
t
D
at
a
B
as
e
Sy

st
em

1D
B
S

C
at
eg
or
ic
al

A
C
C
E
SS

,A
D
A
B
A
S,

A
tta
in
,D

B
2,

D
om

in
o,

E
xc
ha
ng
e,
Fo

xp
ro
,H

IR
D
B
,I
M
S,

M
S
SQ

L
,N

C
R
,N

o,
O
R
A
C
L
E
,

SA
S,

So
lid

,S
Y
B
A
SE

,U
ns
pe
ci
fi
ed
,W

at
co
m
,W

G
R
E
S

D
ev
el
op
m
en
t
Pl
at
fo
rm

D
P

C
at
eg
or
ic
al

M
F,

M
R
,M

ul
ti,

PC
D
ev
el
op
m
en
t
Ty

pe
D
T

C
at
eg
or
ic
al

E
nh
an
ce
m
en
t,
N
ew

D
ev
el
op
m
en
t,
R
e-
de
ve
lo
pm

en
t

Fu
nc
tio

na
l
Si
ze

FS
Z

C
on
tin

uo
us

[6
..1
35
80
]
FP

In
du
st
ry

Se
ct
or

IS
C
at
eg
or
ic
al

B
an
ki
ng
,C

om
m
un
ic
at
io
n,

C
on
st
ru
ct
io
n,

E
le
ct
ro
ni
cs

&
C
om

pu
te
rs
,F

in
an
ci
al
,G

ov
er
nm

en
t,
In
su
ra
nc
e,
M
an
uf
ac
tu
ri
ng
,

M
ed
ic
al
&

H
ea
lth

C
ar
e,
M
in
in
g,

Pr
of
es
si
on
al
Se
rv
ic
es
,S

er
vi
ce

In
du
st
ry
,U

til
iti
es
,W

ho
le
sa
le
&

R
et
ai
l

L
an
gu
ag
e
Ty

pe
LT

C
at
eg
or
ic
al

3G
L
,4

G
L
,A

pG
N
or
m
al
is
ed

W
or
k
E
ff
or
t
L
ev
el
1

N
W
E
L
1

C
on
tin

uo
us

[2
6.
.7
17
29
]
ho
ur
s

Pr
im

ar
y
Pr
og
ra
m
m
in
g
L
an
gu
ag
e

PP
L

C
at
eg
or
ic
al

.N
et
,A

B
IN

IT
IO

,A
B
A
P,
A
cc
es
s,
A
SP
,C

,C
/A
L
,C

#,
C
+
+
,C

O
B
O
L
,D

at
as
ta
ge
,D

E
L
PH

I,
E
A
SY

T
R
IE
V
E
,H

T
M
L
,

Ja
va
,J
av
aS
cr
ip
t,
L
ot
us

N
ot
es
,N

A
T
U
R
A
L
,O

ra
cl
e,
O
ut
lo
ok
V
B
A
,P

L
/I
,P

L
/S
Q
L
,P

ow
er
B
ui
ld
er
,P

ro
*C

,R
PG

,S
A
S,

Sh
el
l,
SQ

L
,T

E
L
O
N
,U

ns
pe
ci
fi
ed
,V

is
ua
l
B
as
ic
,V

is
ua
l
St
ud
io

.N
et

Pr
oj
ec
t
E
la
ps
ed

T
im

e
PE

T
C
on
tin

uo
us

[0
.4
..8
7]

m
on
th
s

U
se
d
M
et
ho
do
lo
gy

U
M

C
at
eg
or
ic
al

D
on
’t
kn
ow

,N
o,

Y
es

1308 Software Qual J (2018) 26:1299–1325

& Language Type (LT) defines the programming language type used for the project. In the
subset, third-generation languages dominate (67.79%) and fourth-generation languages are
also well represented (31.56%), but Application Generator (0.65%) is hardly represented.
Statistical evidence exists indicating that LT has an impact on effort (Lokan and Mendes
2009b). In practice, high-level programming languages and in particular all 4GL languages
are designed to reduce programming effort, but in contrast, they require considerable effort
during the design phase (Chatzipetrou et al. 2012).

& Project Elapsed Time (PET) represents the total elapsed time for the project in calendar
months (actual duration). This variable is related to the effort on a software project, when
considered with the resources that have been allocated. These resources are to some extent
reflected by the team size and dedication of the team. PET has a mean value of
8.04 months, a median value of 6 months, and a standard deviation of 6.9 months.
Moreover, it has been used too as an independent variable, similarly to other variables
regarding the duration of the project such as Project Inactive Time, or variables concerning
the team size (Maximum Team Size and Average Team Size).

& Primary Programming Language (PPL) indicates the primary language used for develop-
ment. Since particular programming languages belong to one of the language types, this
variable is in a way redundant with LT (Jiang and Comstock 2007). When two or more
independent variables contain redundant information, only one is to be considered (Bibi
et al. 2008; Huang and Chiu 2006). LT is more often used than PPL, except where
information about the specific programming language is required. The categorization of
this variable will be considered in the next section.

& Used Methodology (UM) states whether (56.04%) or not (4.51%) a development meth-
odology was used by the development team to build the software (BDon’t know^ accounts
for the remaining 39.45%).

3.1.4 Categorization

Some of these features have too many distinct levels or are not recorded in a consistent format.
Hence, there is a need to formalize these features so as to minimize confusion of concepts and
to maximize both consistency and, when possible, the number of responses for each level
(Deng and MacDonell 2008). The formalization rules are described in the next paragraphs and
the resulting levels of the categorical features are recorded in the fourth column of Table 2.

Particularly, two features have been re-categorized: PPL and 1DBS. PPL presented 36
levels after filtering. In this regard, two projects out of 621 with unclear values have been
transmuted to BUnspecified^ (Deng andMacDonell 2008). Besides, PPL values corresponding
to other three projects were converted into more general programming languages (ASP, C++,
and Visual Basic). These minor changes resulted in obtaining 32 levels. These values are
coherent with those presented in (ISBSG 2013c). The most relevant programming languages
are as follows: COBOL (19.48%), Visual Basic (18.36%), PL/I (12.56%), and Java (8.37%).

If known, 1DBS is the primary technology database used to build or enhance the software
(i.e., that used for most of the build or enhancement effort); nevertheless, there are 21 projects
(3.38%) that do not use a DBS. This feature is not normalized and includes simply descriptive
strings rather than predefined categories. Hence, the number of distinct levels, after filtering, is
83. Besides, 1DBS values are not recorded in a consistent format. To start with, some values

Software Qual J (2018) 26:1299–1325 1309

such as BYes,^ Bmultiple,^ BISAM,^ and BVSAM^ were transformed into BUnspecified^
(6.44%). Next, DBS categories were formed by grouping together related occurrences (i.e.,
Oracle 7, Oracle 7.3, Oracle 7.3.4, Oracle 8, Oracle 8.0, and so on, formed Oracle category;
DB2, DB2/2, DB2 V3, DB2 UDB, and similar ones, formed DB2 category, etc.). As a result,
19 categories have been obtained. The most relevant DBS are as follows: DB2 (34.46%),
ORACLE (26.25%), IMS (12.24%), MS SQL (7.41%), and Access (3.54%).

3.2 Case-based reasoning in software development effort estimation

The case-based reasoning (CBR) approach was firstly proposed by Shepperd and
Schofield (1997) as a valid alternative to expert judgment and algorithmic method for
SDEE. CBR works similarly to the way in which an expert typically estimates software
effort (Dejaeger et al. 2012), i.e., the most similar historical projects are selected to
estimate a new project using a similarity measure. Furthermore, it is a convenient meth-
odology when dealing with mixed features (Liu et al. 2013). Generally, there are three
parameters for CBR method: the similarity measure, the number of most similar projects
(analogies), and the analogy adaptation (Angelis and Stamelos 2000).

As one of the key components of CBR, the similarity measure considers the level of
similarity between projects. Several similarity measures have been proposed, such as the
Euclidean, Manhattan, Clark, or Canberra distance. The performance of these similarity
measures is strongly related to the type of features representing each project. It is quite
different to deal with continuous or categorical data (Núñez et al. 2004). These measures are
also sensitive to irrelevant, interacting, or noisy features. Hence, the choice of project features
has large impact on the similarity measure and FS has become an important pre-processing
step that generally improves CBR, especially for SDEE (Mendes et al. 2003) when using
ISBSG, Desharnais, and Kitchenham datasets (Huang et al. 2015). Several FS methods have
been proposed for CBR, such as exhaustive search (Shepperd and Schofield 1997), hill
climbing, and forward sequential selection (Kirsopp et al. 2002). However, most existing
feature selectors for CBR are the so-called wrappers (Kohavi and John 1997).

The number of analogies considers the number of most similar projects that will be used
to generate the estimation. In particular, one or more historical software projects are
needed to estimate the cost of a new project. k-nearest neighbor (k-NN) is a classification
technique that should be one of the first choices for a classification study when there is
little prior knowledge about the distribution of the data (Dudani 1976). This technique is
broadly used in CBR. k-NN is commonly based on the Euclidean distance between a test
sample and the specified training samples. k-NN is also quite sensitive to the considered
features, i.e., it is less effective when many features are irrelevant or noisy. Many studies
suggest the closest analogy (k = 1) but, in this study, we have considered k = {1, 2, 3, 4} to
cover the most commonly used values (Huang and Chiu 2006; Jørgensen et al. 2003;
Mendes et al. 2003; Shepperd and Schofield 1997).

After the analogies have been selected, the prediction for a new project is determined
by certain statistics based on the k selected projects. The closest analogy, the mean of
closest analogies, the median, and the inverse distance weighted mean (Kadoda et al.
2000) are the most common adaptation techniques. In this paper, however, the mean of
the k-nearest neighbors is used to estimate software project costs. Using this measure of
central tendency, all analogies are treated as being equally influential on the cost
estimates (Li et al. 2009).

1310 Software Qual J (2018) 26:1299–1325

3.3 Comparison of Feature Selection algorithms

The four FS algorithms described in Section 2.2 were compared and also tested against a
baseline. In this regard, a greedy forward selection (GFS from here on) algorithm was used to
compare the accuracy and computational efficiency of the proposed forward selection algo-
rithms based on one or two ordered lists.

The GFS procedure begins by evaluating allM feature subsets which include just one feature
to find the best one. Next, forward selection finds the best two-feature subset, including the
variable selected in the first loop, and a second one from the remaining features. Hence, there are
M - 1 pairs to be tested. The new feature contained in this pair is included only when the best two-
feature CBR outperforms the best CBR obtained from the first loop. This procedure consequent-
ly continues assessing new features accordingly to the aforementioned inclusion criteria.

For comparison purposes, the prediction accuracy and the computational cost of the FS
algorithms were considered. Furthermore, both the number of selected features and the
preference of usage of these features were examined.

3.4 Multiple 3-fold cross-validation

Cross-validation is usually used when testing for classification accuracy (Awada et al. 2012) by
splitting the data intomultiple n folds or partitions of equal size. The first n − 1 folds are used for
training the learner, and the remaining fold is used to test the learner. This process is performed
n times so that each of the folds will be used as the test fold. In this study, the number of splits to
make in the dataset was set to three. Hence, two folds are used to construct the estimationmodel
and the remaining fold tests the performance of the model using the Mean Magnitude of
Relative Error (MMRE). Hall and Holmes (2003) recommend repeating the n-way cross-
validation multiple times, each time randomizing the order of the data to reduce order effects
(influenced by the ordering of the data) and perhaps also excessive variance. Cross-validation is
also run multiple times to compare the performance of the FS algorithms using statistical
significance tests such as the Wilcoxon rank test. Hence, in this paper, cross-validation was run
500 times regarding the convergence of the algorithms. To sum up, for each run, the whole data
set (621 projects) is considered but different seeds are used to obtain random 3-fold splits.

4 Experimental results

This section presents the experimental results. Basically, the performance of the four FS
algorithms is compared between them and against the GFS algorithm, first considering
accuracy issues, and finally, by analyzing the selected features.

4.1 Accuracy of feature selection algorithms

4.1.1 Convergence of the algorithms

First of all, the convergence of the algorithms was analyzed. To quantify the variation,
cross-validation was repeated 500 times so as to estimate the distribution of the perfor-
mance statistics. This allowed us to fix the number of cross-validations to be considered
in the experimental work.

Software Qual J (2018) 26:1299–1325 1311

Figure 2 shows the evolution of the MMRE average as a function of the number of cross-
validations performed for each algorithm and k = 1. Similar figures and analysis were obtained
for other values of k. The results denote that FS algorithms are highly sensitive to data. This
can be seen in Fig. 2 where MMRE cumulative means fluctuate when considering the first 100
cross-validations and progressively consolidate. In fact, data series present minor fluctuations
after 300 runs.

To support the algorithm convergence, the differences between consecutive cumulative
means are contrasted to a tolerance threshold. Thereby, when the cumulative means
oscillate less than this threshold over a range of simulations, this can be denoted as the
convergence of the algorithm. In this regard, Table 3 shows the simulations required
considering several tolerance thresholds (from 0.01 to 0.10%) and all four FS algorithms
for k = 1, over 50 consecutive runs. Considering a tolerance threshold of 0.03%, all
algorithms converge around iteration 400. Hence, 500 runs (cross-validations) have been
performed in the experimental work.

Table 3 Convergence of the algo-
rithms for different tolerance
thresholds (k = 1)

Tolerance (%) MI_1L mRMR_1L MI_2L mRMR_2L

0.10 147 138 137 158
0.09 158 141 137 158
0.08 191 175 202 158
0.07 217 180 216 159
0.06 283 204 279 222
0.05 346 213 320 267
0.04 346 288 361 269
0.03 406 414 407 413
0.02 0 0 0 0
0.01 0 0 0 0

1312 Software Qual J (2018) 26:1299–1325

Fig. 2 Evolution of the cumulative means of MMRE values for k = 1

4.1.2 Influence of K value in the accuracy of the algorithms

Since the best choice of k depends upon the data and the specific application, an
experiment will evaluate the performance of the estimation model when using different
k values for the four FS algorithms. The performance is evaluated by means of the MMRE
accuracy indicator. In general, only the most similar cases are selected, suggesting a small
value for k. In this study, we have used 1 to 4 nearest neighbors (1 ≤ k ≤ 4).

Table 4 shows the MMRE indicator for different values of k and considering the four FS
algorithms over 500 observations. The best MMRE results are obtained for k = 1. This result is
also obtained in (Auer et al. 2006; Chiu and Huang 2007; Liu et al. 2014). The FS algorithms
mRMR_2L andMI_2L present quite similar behavior and better performance than mRMR_1L
and MI_1L. Hereafter, the value of k is fixed to 1.

4.1.3 Accuracy of the Feature Selection algorithms

For k = 1, the mean and variance values of MMRE for the FS algorithms are MI_1L (1.4197,
0.0044), mRMR_1L (1.4174, 0.0043), MI_2L (1.3982, 0.0043), mRMR_2L (1.3956, 0.0040),
GFS (1.3516, 0.0030). Figure 3 depicts MMRE notched box plots considering the proposed
four FS algorithms for 500 cross-validations. The resulting notched box plots do not suggest
that medians are significantly different. Anyway, it is important to check if these four means
are significantly different from one another using a Wilcoxon rank test with a confidence level
of 0.95 (Keung et al. 2012). This test does not assume that the difference between the samples
is normally distributed.

The mean of MMRE values corresponding to FS algorithm MI_1L is significantly
higher than the means corresponding to MI_2L and mRMR_2L. That also applies to the
mean of MMRE values corresponding to mRMR_1L which is significantly higher than
the mean corresponding to MI_2L and mRMR_2L. However, algorithms MI_1L and
mRMR_1L are not significantly different; similarly, MI_2L compared to mRMR_2L.
These results are consistent with Table 4. In sum, the FS algorithms mRMR_2L and
MI_2L present quite similar behavior and better performance than mRMR_1L and
MI_1L. Hence, it is relevant to consider two different lists of features (continuous and
categorical) following Doquire and Verleysen standpoint (Doquire and Verleysen 2011).
Though, regarding the usefulness of including redundancy in these algorithms, the results
are non-conclusive. Finally, when comparing the aforementioned means with GFS mean,
the latter presents a significantly lower value.

Besides the prediction accuracy, the computational cost is also considered in this study. The
FS algorithms are tested on a INTEL Xeon E5-2620 @ 2.40 GHz with 2Gb of RAM. Table 5
presents the average and standard deviation of the execution times in seconds over 500
observations for each algorithm when k = 1.

Table 4 Cumulative means of
MMRE K MI_1L mRMR_1L MI_2L mRMR_2L

1 1.4197 1.4174 1.3982 1.3956
2 1.4958 1.4939 1.4730 1.4740
3 1.5929 1.5906 1.5760 1.5756
4 1.6806 1.6796 1.6645 1.6622

Software Qual J (2018) 26:1299–1325 1313

Wrappers are usually criticized because they require massive amounts of computation;
nevertheless, greedy search strategies seem to be particularly computationally advantageous
and robust against overfitting (Guyon and Elisseeff 2003). In this regard, Table 5 shows that
the hybrid algorithms where features are first filtered outperform GFS in terms of computa-
tional efficiency. In sum, the use of one or two ordered lists leads to an improvement of the
running time (59.9% in the case of 1L–based algorithms and 38.6% in the case of 2L–based
algorithms) without sacrificing too much prediction performance (4.9 and 3.3%, respectively).
Finally, Table 5 also shows that the running time is not influenced by using MI or mRMR. The
algorithms that use two lists are 53.3% more costly than those that use one list. Besides, the
computational cost presents more variability when using two lists.

4.2 Analysis of selected features

4.2.1 Mutual information and redundancy of the independent variables

Figure 4 shows the MI between the different independent variables and the dependent variable
considering the whole dataset. These features are sorted in descending order, which will guide
FS in the algorithms MI_L1 and MI_L2. Indeed, this diagram provides useful information for

Table 5 Running times of the
algorithms Algorithm Mean (seconds) Standard deviation

MI_1L 59.67 0.951
mRMR_1L 59.65 0.964
MI_2L 91.34 11.348
mRMR_2L 91.55 11.393
GFS 148.83 37.950

1314 Software Qual J (2018) 26:1299–1325

Fig. 3 Box plots of the accuracy (MMRE) regarding FS algorithms

diagnosing later the feature extraction of both algorithms. In Fig. 4, it is apparent that the
features FSZ and AFP have the highest MI with the effort feature, followed by PET and PPL.
1DBS and IS are located in the middle, while the rest of features have very low MI (<0.05).

At this point, it is necessary to analyze the order that will guide the selection of algorithms
mRMR_L1 and mRMR_L2. This order is shown in Fig. 5. Of course, the feature with the

Software Qual J (2018) 26:1299–1325 1315

Fig. 4 Mutual information of the independent variables

Fig. 5 mRMR of the selected features

highest MI is the first selected, i.e., FSZ. As seen in the plot, the selection of FSZ provokes that
AFP (with the second highest MI value) moves to the eighth position, because of the
redundancy between them. Thus, PET is selected in the second position, moving PPL to the
last position. Surprisingly, AG appears in the third position due to its low dependence on the
previously selected features. Then, 1DBS is selected pushing IS to the penultimate position.
Note that Fig. 5 shows the selection order according to mRMR values. However, this does not
imply a strictly decreasing order in mRMR values, since no normalization has been applied to
the redundancy summation (Estévez et al. 2009; Vinh et al. 2010).

4.2.2 Number of selected features depending on algorithms

The number of features selected by each algorithm is analyzed in this section. Since 500 runs
have been performed, Fig. 6 depicts the number of times each algorithm selects a specified
number of features. It can be seen that the mode is 3 in all cases.

Table 6 shows the mean, standard deviation, and Huber’s M of the number of features
selected by each FS algorithm, including GFS. Huber’s M is a robust statistic to summarize
results when the underlying distribution is roughly normal but there are a small proportion of
outliers or heavy tails.

It appears to be that the methods that use two lists employ fewer features to construct the
models than those that only use one list. Using a Wilcoxon rank test with a confidence level of
0.95, all means have been proven to be significantly different from one another. In general, the
four FS algorithms may lead to SDEE models that use less independent features than the
average obtained (6.2 features) in (González-Ladrón-de-Guevara et al. 2016) from a total of
107 proposed effort estimation models. Anyway, GFS models even use less variables. In fact,

1316 Software Qual J (2018) 26:1299–1325

a) MI_1L b) mRMR_1L

c) MI_2L d) mRMR_2L

Fig. 6 Distribution of the number of selected features for each FS algorithm

when the selection is not guided, all the remaining features come into play in each loop,
making possible to obtain smaller models. In the next section, the preference of usage of the
features is analyzed considering all algorithms.

4.2.3 Preference of usage of selected features depending on algorithms

The preference of usage of the features is analyzed in detail considering the algorithms
mRMR_1L and mRMR_2L. This way, Tables 7 and 8 respectively present these results
and, later in this section, a summary with the positions of the features for all algorithms is
presented in Table 9.

Table 7 presents a matrix of the frequencies of usage of the independent variables, with the
detail of the positions in which they have been selected by algorithm mRMR_1L over 500 runs
(k = 1). The first column (1) shows the number of times that each feature has been selected in
the first position, the second column (2) the number of times each feature has been selected in
the second position, and so on for the rest of columns until the last possible position (11 in this
case). The twelfth column (12) indicates the number of times each of the features has not been
selected by the algorithm.

Finally, WP is a preference indicator of the usage of each feature that considers either the
number of times this feature has been selected and the position order in which it has been
selected. Provided that 11 is the total number of the independent variables, the range ofWP is
between 1 and 12. If a feature reachesWP = 1, it denotes that this feature has always (i.e., in all
runs) been selected in the first position. On the other side, a maximum value of 12 shows that
this feature has never been selected. Hence, when a feature has been selected in all 500 runs
(cross-validations), it represents the selection average position of this feature. WP also
considers the selection frequency of the feature: the less the feature is chosen, the more WP
comes near to 12. Consequently, WPi shows the weighted selection position for feature i,

Table 6 Number of features se-
lected by each FS algorithm Algorithm Mean Huber’s M Standard deviation

MI_1L 2.852 2.833 1.154
mRMR_1L 3.008 2.985 1.200
MI_2L 2.772 2.746 1.157
mRMR_2L 2.810 2.794 1.132
GFS 1.684 1.605 0.826

Table 7 Usage of selected features for algorithm mRMR_1L

1 2 3 4 5 6 7 8 9 10 11 12 WP

FSZ 500 0 0 0 0 0 0 0 0 0 0 0 1.00
PET 0 244 0 0 0 0 0 0 0 0 0 256 7.12
AG 0 84 72 0 0 0 0 0 0 0 0 344 9.02
1DBS 0 45 67 17 0 0 0 0 0 0 0 371 9.62
DT 0 23 47 27 2 0 0 0 0 0 0 401 10.23
AFP 0 18 18 28 12 2 0 0 0 0 0 422 10.68
LT 0 15 33 23 3 1 0 0 0 0 0 425 10.68
UM 0 10 26 24 9 0 1 0 0 0 0 430 10.81
DP 0 6 22 15 12 1 1 0 0 0 0 443 11.05
IS 0 6 15 17 12 2 0 0 0 0 0 448 11.15
PPL 0 6 13 15 4 6 0 0 0 0 0 456 11.28

Software Qual J (2018) 26:1299–1325 1317

considering a weight value of 12 when the feature i has not been selected. Note that the
weights of each position correspond with the position itself. WPi can be expressed as follows:

WPi ¼ ∑12
j¼1 Mi; j* j

� �
=runs ð7Þ

where

Mi,j is the number of times that feature i has been selected in position j
j is the position order in which a feature i can be selected
runs is the total number of runs or cross-validations (runs = 500)

Table 7 shows that the feature FSZ is used in all cases at the first position (WP = 1). The
second preferred feature is PET that has been used in 244 out of 500 cases and always at
the second position; hence, its WP is much higher (7.12). AG has been used only in the
second (84 times) and third place (72 times). The five first features follow exactly the
order shown in Fig. 5. The rest of the features have been less used and in higher positions,
as noted by their WP values.

Similarly, Table 8 shows the results for mRMR_2L. The most preferred feature is FSZ too
and the second place, with a slight difference, is for AG that is also used in 250 out of 500
cases at the first position. This categorical feature has increased its preference of usage due to
the consideration of two lists, clearly overpassing the continuous feature PET. In general, there

Table 8 Usage of selected features for algorithm mRMR_2L

1 2 3 4 5 6 7 8 9 10 11 12 WP

FSZ 250 85 16 2 0 0 0 0 0 0 0 147 4.48
AG 250 77 20 0 0 0 0 0 0 0 0 153 4.60
PET 0 106 47 8 1 1 0 0 0 0 0 337 8.88
1DBS 0 83 38 12 1 0 0 0 0 0 0 366 9.45
AFP 0 30 56 22 10 0 0 0 0 0 0 382 9.90
DT 0 27 46 16 4 1 0 0 0 0 0 406 10.31
LT 0 14 22 16 3 0 0 0 0 0 0 445 11.03
UM 0 9 13 11 8 1 0 0 0 0 0 458 11.29
DP 0 7 14 11 4 1 0 0 0 0 0 463 11.36
PPL 0 2 10 12 6 3 0 0 0 0 0 467 11.47
IS 0 6 8 9 5 1 0 0 0 0 0 471 11.51

Table 9 Feature selection ranking regarding to WP

MI_1L mRMR_1L MI_2L mRMR_2L GFS

1 FSZ FSZ PPL FSZ LT
2 AFP PET FSZ AG AG
3 PET AG AFP PET IS
4 PPL 1DBS 1DBS 1DBS AFP
5 1DBS DT PET AFP UM
6 IS AFP IS DT PPL
7 DP LT DP LT DP
8 AG UM AG UM PET
9 DT DP LT DP FS
10 UM IS DT PPL 1DBS
11 LT PPL UM IS DT

1318 Software Qual J (2018) 26:1299–1325

is a greater participation of several features in the first positions of the models when using the
algorithmmRMR_2L but the features in the last places have been less used (higherWP values)
than in mRMR_1L.

Next, Table 9 shows the features sorted by their weighted position (WP) for each FS
algorithm including GFS too. Regarding the hybrid algorithms, it clearly shows that the feature
FSZ appears at the first position in three of them. However, PPL occupies the first position
when using MI_2L. The five features that have been used in the first three positions are AFP,
AG, FSZ, PET, and PPL.

The continuous features appear in the first positions of Table 9 when using MI_1L. In the
rest of the cases (either when using two lists or taking into account redundancy between
features), the categorical features improve their position. For example, PET is overpassed by
several categorical features in MI_2L. It should be noted that, when considering redundancy
either in the case of one list or two lists, PPL strongly diminishes its level of usage and AFP
(with a strong relationship with FSZ) decreases its level of usage too. Conversely, AG notably
improves its level of usage (despite providing low MI, its redundancy with FSZ and PET is
also very low). PET also slightly improves its position. When considering the nature of the
features, i.e., when two lists are considered, PPL in the case of MI and AG improve their
positions when redundancy is taking into account. By the way, there are features that have a
quite steady level of usage in all methods such as FSZ and 1DBS.

A different situation is depicted for GFS. Due to the fact that this approach uses no
reference guide for feature selection, the ordered features in the last column of Table 9 are
quite different from the previous ones. Apart from that,WP values range from 10.02 till 10.59;
hence, GFS does not discriminate and orient conveniently in regard to the features to be
selected. According to the WP values in Table 8, the differences in the usage of selected
features are more relevant for the first five than the rest of features. This way, for the
mRMR_2L algorithm, FSZ is the most used variable not only in the experiments but usually
in the SDEE methods that have used ISBSG data (González-Ladrón-de-Guevara et al. 2016).
Something similar occurs regarding feature AFP. However, from Table 10 where the results
from (González-Ladrón-de-Guevara et al. 2016) are compared to these experimental results,
variables AG, PET, and 1DBS play a more important role in mRMR_2L algorithm than DT,
LT, and DP.

Particularly, AG is a categorical feature that has been selected by the mRMR_2L algorithm
in 250 out of 500 runs as the first feature of the model. This feature is derived from AT in
ISBSG Release 12. In fact, AG has been used 69.4% of the times while the frequency of use of
AT is 21.5% in (González-Ladrón-de-Guevara et al. 2016). Similarly, 1DBS with a frequency
of use of 13.1% (González-Ladrón-de-Guevara et al. 2016) has increased its share till 26.8% in
the case of the mRMR_2L algorithm. This feature has undergone a significant reduction in
levels during the pre-processing stage. Finally, PET has a frequency of use of 21.5%
(González-Ladrón-de-Guevara et al. 2016) while it has been selected 32.6% of the runs.

Table 10 ISBSG variables most
frequently used in the literature
compared to mRMR_2L algorithm

Position (González-Ladrón-de-Guevara et al. 2016) mRMR_2L

1 FSZ, 61.7% FSZ, 70.6%
2 DT, 57.9% AG, 69.4%
3 LT, 53.3% PET, 32.6%
4 DP, 52.3% 1DBS, 26.8%
5 AFP, 28% AFP, 23.6%

Software Qual J (2018) 26:1299–1325 1319

PET is the third continuous variable ordered by mutual information (Fig. 4) and the second
ordered by mRMR (Fig. 5). It should be noted that from the selected ISBSG features analyzed
in this paper, only FSZ, AFP, and PET are continuous and all three features get promoted by
the mRMR_2L algorithm. Hence, it may be interesting to favor the usage of AG, PET, and
1DBS with preference over DT, LT, and DP.

5 Threats to validity

Several threats to validity that may affect the ability to obtain reliable conclusions have been
identified. To begin with, the re-categorization of two independent features, even if irrelevant
for one of them (PPL), has been described in detail. Besides, just one learner has been used in
this experiment. This may be considered as a threat to validity. Nonetheless, CBR is quite
sensitive to FS and is usually used to test FS algorithms. Moreover, CBR could be sensitive to
the choice of distance metric. For this reason, the Gower distance has been used; allowing
continuous and categorical variables to be considered in the same model and could take into
account the presence of missing data.

Another threat to validity is related to the accuracy measures. As Shepperd and MacDonell
reported (Shepperd and MacDonell 2012), certain measures for performance prediction like
MMRE or PRED are not the most appropriate. Therefore, measures based on residuals could
also be used. To mitigate the bias of this threat, a significant number of cross-validations have
been performed.

Finally, some other factors are relevant when comparing FS algorithms. According to
Shepperd and MacDonell (2012), one of them is the ease of use. In this regard, we have
included the computational cost of the procedures and the average number of selected features.
Furthermore, to avoid inconsistent results, the proposed FS algorithms were compared against
a baseline.

6 Conclusions and future work

Existing FS approaches are mainly designed for classification problems with categorical or
continuous features. However, the data collected in SDEE include both categorical and
continuous features. There are different approaches to deal with mixed features in FS methods,
the most common approach being to convert the problem into a discrete or continuous one.

This paper aims to address the problem of selecting the most relevant features from ISBSG
dataset to be used in SDEE. To deal with mixed features, the approach of two separated lists
proposed in (Doquire and Verleysen 2011) is followed, and provided that the continuous
features have been previously discretized, the ranking of both continuous and categorical
features is based on the same MI measure. The ranked list is then split into two for the
continuous and categorical features and recombined according to the accuracy of a CBRmodel.

The experimental work performed is based on ISBSG Release 12 which includes 6006
projects and 126 features. After the filtering process, 1884 projects are remaining. This study
focuses on the 20 ISBSG features most frequently used as independent variables in effort
estimation models according to (González-Ladrón-de-Guevara et al. 2016). NWEL1 has been
used as dependent variable to ensuremaximum consistency (González-Ladrón-de-Guevara et al.
2016). Application Type and Organization Type have been replaced by AG and IS suggested in

1320 Software Qual J (2018) 26:1299–1325

Release 12. Eight features with missing values larger than 60% have been excluded. Resource
Level has been also excluded because known development team effort is required as one of the
selection criteria. Finally, projects with any missing value in the independent variables were
discarded, resulting in a complete dataset with 621 projects and 12 features.

Four algorithms that include aspects of filter and wrapper approaches are considered. In all
four, MI is used as a measure of both the relevance of a feature and its redundancy. Also, the
mean of the k-nearest neighbors is used to estimate software project costs. The results of the
experimental work have been obtained over 500 cross-validations for accuracy purposes. The
best MMRE results are obtained for k = 1.

The performance of the proposed hybrid algorithms is compared between them and against
a GFS wrapper approach. The hybrid algorithms improve the computational efficiency of
GFS. Due to the fact that the selection is not guided by a list, GFS improves slightly the
accuracy and presents models with a reduced number of variables in average. However, this is
detrimental to its ability to generalize and guide the features to be selected.

Concerning the hybrid approach, FS algorithms that discriminate between continuous and
categorical features (mRMR_2L and MI_2L) present quite similar behavior and better perfor-
mance than those that do not discriminate (mRMR_1L and MI_1L). In fact, the mean of
MMRE values corresponding to FS algorithm MI_1L is significantly higher than the means
corresponding to MI_2L and mRMR_2L. The mean of MMRE values corresponding to
mRMR_1L is also significantly higher than the means corresponding to MI_2L and
mRMR_2L. However, algorithms MI_1L and mRMR_1L are not significantly different;
similarly, MI_2L compared to mRMR_2L. Hence, it is relevant to consider two different lists
of features (continuous and categorical) following Doquire and Verleysen standpoint (Doquire
and Verleysen 2011). Though, regarding the usefulness of including redundancy in these
algorithms, the results are non-conclusive.

Regarding the selected features in the experiments, FSZ is the most frequently selected
feature when using MI_1L, mRMR_1L, and mRMR_2L. However, PPL occupies the first
position when using MI_2L. The five features that have been used in the first three positions
are APF, AG, FSZ, PT, and PPL. The continuous features appear in the first positions when
using MI_1L. In the rest of the cases (either when using two lists or taking into account
redundancy between features), the categorical features improve their position. Moreover, FSZ
is not only the most used variable in the experiments but also in the SDEE methods that have
used ISBSG data. The same happens with AFP. However, while variables DT, LT, and DP
usually conform the group of the five most used variables, the experimental results suggest that
the usage of variables AG, PET, and 1DBS should be fostered.

Again, these results denote the convenience of discriminating between continuous and
categorical features. In order to select the most relevant features from ISBSG dataset to be
used in SDEE, it is convenient to deepen research in this FS area. In particular, the
performance could be assessed when using other FS standpoints such as INMIFS
(Chandrashekar and Sahin 2014), hierarchical FS, or other applications of CBR method-
ology. For further work, alternative measures of performance prediction can be used, i.e.,
measures based on residuals such as Standardised Accuracy (Shepperd and MacDonell
2012) or Exact Mean Absolute Error of Baseline Predictor (Langdon et al. 2016). It should
also be interesting to deal with missing data by applying some imputation techniques;
hence, the working dataset will be larger and some other variables could be included in the
selection set. Finally, it can be valuable to consider a bootstrap approach, as a complement
to cross-validation, searching for obtaining robust statistics.

Software Qual J (2018) 26:1299–1325 1321

References

Angelis, L., & Stamelos, I. (2000). A simulation tool for efficient analogy based cost estimation. Empirical
Software Engineering, 5(1), 35–68. https://doi.org/10.1023/A:1009897800559.

Auer,M., Trendowicz, A., Graser, B., Haunschmid, E., &Biffl, S. (2006). Optimal project feature weights in analogy-
based cost estimation: improvement and limitations. Software Engineering, IEEE Transactions on, 32(2), 83–92.

Awada, W., Khoshgoftaar, T. M., Dittman, D., Wald, R., Napolitano, A. (2012). A review of the stability of
feature selection techniques for bioinformatics data. In 2012 I.E. 13th International Conference on
Information Reuse and Integration (IRI) (pp. 356–363). Presented at the 2012 I.E. 13th International
Conference on Information Reuse and Integration (IRI). https://doi.org/10.1109/IRI.2012.6303031.

Battiti, R. (1994). Using mutual information for selecting features in supervised neural net learning. Neural
Networks, IEEE Transactions, 5(4), 537–550.

Bennasar, M., Hicks, Y., & Setchi, R. (2015). Feature selection using joint mutual information maximisation.
Expert Systems with Applications, 42(22), 8520–8532. https://doi.org/10.1016/j.eswa.2015.07.007.

Bibi, S., Tsoumakas, G., Stamelos, I., & Vlahavas, I. (2008). Regression via classification applied on software
defect estimation. Expert Systems with Applications, 34(3), 2091–2101. https://doi.org/10.1016/j.
eswa.2007.02.012.

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical
Engineering, 40(1), 16–28.

Chatzipetrou, P., Papatheocharous, E., Angelis, L., Andreou, A. S. (2012). An investigation of software effort
phase distribution using compositional data analysis. In 2012 38th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA) (pp. 367–375). Presented at the 2012 38th EUROMICRO
Conference on Software Engineering and Advanced Applications (SEAA). https://doi.org/10.1109
/SEAA.2012.50.

Chen, Z., Menzies, T., Port, D., & Boehm, B. (2005). Feature subset selection can improve software cost
estimation accuracy. In Proceedings of the 2005 workshop on predictor models in software engineering (pp.
1–6). New York: ACM. https://doi.org/10.1145/1082983.1083171.

Chiu, N.-H., & Huang, S.-J. (2007). The adjusted analogy-based software effort estimation based on similarity
distances. Journal of Systems and Software, 80(4), 628–640.

Dash, M., & Liu, H. (2003). Consistency-based search in feature selection. Artificial Intelligence, 151(1), 155–176.
Dejaeger, K., Verbeke, W., Martens, D., & Baesens, B. (2012). Data mining techniques for software effort

estimation: a comparative study. Software Engineering, IEEE Transactions on, 38(2), 375–397. https://doi.
org/10.1109/TSE.2011.55.

Deng, K., &MacDonell, S. G. (2008). Maximising data retention from the ISBSG repository. In Proceedings of the
12th international conference on evaluation and assessment in software engineering (pp. 21–30). Swinton:
British Computer Society http://dl.acm.org/citation.cfm?id=2227115.2227118. Accessed 21 Jan 2014.

Doquire, G., & Verleysen, M. (2011). An hybrid approach to feature selection for mixed categorical and
continuous data. In International Conference on Knowledge Discovery and Information Retrieval.
http://hdl.handle.net/2078.1/90765. Accessed 2 Nov 2015.

Dudani, S. A. (1976). The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems, Man and
Cybernetics, SMC, 6(4), 325–327. https://doi.org/10.1109/TSMC.1976.5408784.

Estévez, P. A., Tesmer, M., Perez, C. A., & Zurada, J. M. (2009). Normalized mutual information feature selection.
IEEE Transactions on Neural Networks, 20(2), 189–201. https://doi.org/10.1109/TNN.2008.2005601.

Fayyad, U.M., & Irani, K.B. (1993). Multi-Interval Discretization of Continuous-Valued Attributes for
Classification Learning. In Proceedings of the International Joint Conference on Uncertainty in AI (pp.
1022–1027). Presented at the International Joint Conference on Uncertainty in AI. https://www.researchgate.
net/publication/220815890_Multi-Interval_Discretization_of_Continuous-Valued_Attributes_for_
Classification_Learning. Accessed 22 June 2016.

Fernández-Diego, M., & González-Ladrón-de-Guevara, F. (2014). Potential and limitations of the ISBSG dataset
in enhancing software engineering research: a mapping review. Information and Software Technology, 56(6),
527–544. https://doi.org/10.1016/j.infsof.2014.01.003.

Ferreira, A., & Figueiredo, M. (2011). Unsupervised joint feature discretization and selection. In J. Vitrià, J. M.
Sanches, & M. Hernández (Eds.), Pattern recognition and image analysis (Vol. 6669, pp. 200–207). Berlin,
Heidelberg: Springer Berlin Heidelberg http://link.springer.com/10.1007/978-3-642-21257-4_25. Accessed
4 Mar 2016.

Fleuret, F. (2004). Fast binary feature selection with conditional mutual information. Journal of Machine
Learning Research, 5, 1531–1555.

González-Ladrón-de-Guevara, F., Fernández-Diego, M., & Lokan, C. (2016). The usage of ISBSG data fields in
software effort estimation: a systematic mapping study. Journal of Systems and Software, 113, 188–215.
https://doi.org/10.1016/j.jss.2015.11.040.

1322 Software Qual J (2018) 26:1299–1325

https://doi.org/10.1023/A:1009897800559
https://doi.org/10.1109/IRI.2012.6303031
https://doi.org/10.1016/j.eswa.2015.07.007
https://doi.org/10.1016/j.eswa.2007.02.012
https://doi.org/10.1016/j.eswa.2007.02.012
https://doi.org/10.1109/SEAA.2012.50
https://doi.org/10.1109/SEAA.2012.50
https://doi.org/10.1145/1082983.1083171
https://doi.org/10.1109/TSE.2011.55
https://doi.org/10.1109/TSE.2011.55
http://dl.acm.org/citation.cfm?id=2227115.2227118
http://hdl.handle.net/2078.1/90765
https://doi.org/10.1109/TSMC.1976.5408784
https://doi.org/10.1109/TNN.2008.2005601
https://www.researchgate.net/publication/220815890_Multi-Interval_Discretization_of_Continuous-Valued_Attributes_for_Classification_Learning
https://www.researchgate.net/publication/220815890_Multi-Interval_Discretization_of_Continuous-Valued_Attributes_for_Classification_Learning
https://www.researchgate.net/publication/220815890_Multi-Interval_Discretization_of_Continuous-Valued_Attributes_for_Classification_Learning
https://doi.org/10.1016/j.infsof.2014.01.003
http://link.springer.com/10.1007/978-3-642-21257-4_25
https://doi.org/10.1016/j.jss.2015.11.040

Gupta, P., Jain, S., & Jain, A. (2014). A review of fast clustering-based feature subset selection algorithm.
International Journal of Scientific & Technology Research, 3(11), 86–91.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal of Machine
Learning Research, 3, 1157–1182.

Hall, M. A., & Holmes, G. (2003). Benchmarking attribute selection techniques for discrete class data mining.
IEEE Transactions on Knowledge and Data Engineering, 15(6), 1437–1447. https://doi.org/10.1109
/TKDE.2003.1245283.

Hausser, J., & Strimmer, K. (2009). Entropy inference and the James-Stein estimator, with application to
nonlinear gene association networks. Journal of Machine Learning Research, 10(Jul), 1469–1484.

Hill, P. (2010). Practical software project estimation: a toolkit for estimating software development effort &
duration. McGraw Hill Professional.

Hsu, H.-H., Hsieh, C.-W., & Lu, M.-D. (2011). Hybrid feature selection by combining filters and wrappers.
Expert Systems with Applications, 38(7), 8144–8150.

Huang, S.-J., &Chiu, N.-H. (2006). Optimization of analogyweights by genetic algorithm for software effort estimation.
Information and Software Technology, 48(11), 1034–1045. https://doi.org/10.1016/j.infsof.2005.12.020.

Huang, S.-J., Chiu, N.-H., & Liu, Y.-J. (2008). A comparative evaluation on the accuracies of software effort
estimates from clustered data. Information and Software Technology, 50(9–10), 879–888. https://doi.
org/10.1016/j.infsof.2008.02.005.

Huang, J., Li, Y.-F., & Xie, M. (2015). An empirical analysis of data preprocessing for machine learning-based
software cost estimation. Information and Software Technology, 67, 108–127. https://doi.org/10.1016/j.
infsof.2015.07.004.

ISBSG. (2013a). ISBSG Dataset Release 12. ISBSG. http://isbsg.org/. Accessed 1 Mar 2016.
ISBSG. (2013b). ISBSG Guidelines Release 12.
ISBSG. (2013c). ISBSG Data Demographics Release 12.
Jeffery, R., Ruhe, M., Wieczorek, I. (2001). Using public domain metrics to estimate software development

effort. In Software Metrics Symposium, 2001. METRICS 2001. Proceedings. Seventh International (pp. 16–
27). https://doi.org/10.1109/METRIC.2001.915512.

Jiang, Z., & Comstock, C. (2007). The factors significant to software development productivity. In C. Ardil (Ed.),
Proceedings of World Academy of Science, Engineering and Technology, Vol 19 (Vol. 19, pp. 160–164).
Presented at the Conference of the World-Academy-of-Science-Engineering-and-Technology, Bangkok:
World Acad Sci, Eng & Tech-Waset.

Jørgensen, M., Indahl, U., & Sjøberg, D. (2003). Software effort estimation by analogy and ‘regression toward the
mean’. Journal of Systems and Software, 68(3), 253–262. https://doi.org/10.1016/S0164-1212(03)00066-9.

Kabir, M. M., Shahjahan, M., & Murase, K. (2011). A new local search based hybrid genetic algorithm for
feature selection. Neurocomputing, 74(17), 2914–2928.

Kadoda, G., Cartwright, M., Chen, L., Shepperd, M. (2000). Experiences using case-based reasoning to predict
software project effort. In EASE 2000 (pp. 2–3). Presented at the EASE 2000, Staffordshire, UK.

Keung, J., Kocaguneli, E., & Menzies, T. (2012). Finding conclusion stability for selecting the best effort
predictor in software effort estimation. Automated Software Engineering, 20(4), 543–567. https://doi.
org/10.1007/s10515-012-0108-5.

Kirsopp, C., Shepperd, M. J., Hart, J. (2002). Search heuristics, case-based reasoning and software project effort
prediction. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 9–13). New York,
USA. http://v-scheiner.brunel.ac.uk/handle/2438/1554. Accessed 27 Jan 2016.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1–2), 273–
324. https://doi.org/10.1016/S0004-3702(97)00043-X.

Kwak, N., & Choi, C.-H. (2002). Input feature selection for classification problems. IEEE Transactions on
Neural Networks, 13(1), 143–159. https://doi.org/10.1109/72.977291.

Langdon, W. B., Dolado, J., Sarro, F., & Harman, M. (2016). Exact mean absolute error of baseline
predictor, MARP0. Information and Software Technology, 73, 16–18. https://doi.org/10.1016/j.
infsof.2016.01.003.

Li, Y. F., Xie, M., & Goh, T. N. (2009). A study of mutual information based feature selection for case based
reasoning in software cost estimation. Expert Systems with Applications, 36(3), 5921–5931.

Liu, H., & Motoda, H. (2012). Feature selection for knowledge discovery and data mining (Vol. 454). Springer
Science & Business Media. https://books.google.es/books?hl=en&lr=&id=aaDbBwAAQBAJ&oi=fnd&pg=
PP10&dq=Feature+selection+for+knowledge+discovery+and+data+mining&ots=iuMhcWZGcf&sig=
KlmNEIcsBdDVs-m1HUuICfpYZiM. Accessed 25 Jan 2016.

Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for classification and clustering.
IEEE Transactions on Knowledge and Data Engineering, 17(4), 491–502. https://doi.org/10.1109
/TKDE.2005.66.

Liu, H., Wei, R., & Jiang, G. (2013). A hybrid feature selection scheme for mixed attributes data. Computational
and Applied Mathematics, 32(1), 145–161. https://doi.org/10.1007/s40314-013-0019-5.

Software Qual J (2018) 26:1299–1325 1323

https://doi.org/10.1109/TKDE.2003.1245283
https://doi.org/10.1109/TKDE.2003.1245283
https://doi.org/10.1016/j.infsof.2005.12.020
https://doi.org/10.1016/j.infsof.2008.02.005
https://doi.org/10.1016/j.infsof.2008.02.005
https://doi.org/10.1016/j.infsof.2015.07.004
https://doi.org/10.1016/j.infsof.2015.07.004
http://isbsg.org/
https://doi.org/10.1109/METRIC.2001.915512
https://doi.org/10.1016/S0164-1212(03)00066-9
https://doi.org/10.1007/s10515-012-0108-5
https://doi.org/10.1007/s10515-012-0108-5
http://v-scheiner.brunel.ac.uk/handle/2438/1554
https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.1109/72.977291
https://doi.org/10.1016/j.infsof.2016.01.003
https://doi.org/10.1016/j.infsof.2016.01.003
https://books.google.es/books?hl=en&lr=&id=aaDbBwAAQBAJ&oi=fnd&pg=PP10&dq=Feature+selection+for+knowledge+discovery+and+data+mining&ots=iuMhcWZGcf&sig=KlmNEIcsBdDVs-m1HUuICfpYZiM
https://books.google.es/books?hl=en&lr=&id=aaDbBwAAQBAJ&oi=fnd&pg=PP10&dq=Feature+selection+for+knowledge+discovery+and+data+mining&ots=iuMhcWZGcf&sig=KlmNEIcsBdDVs-m1HUuICfpYZiM
https://books.google.es/books?hl=en&lr=&id=aaDbBwAAQBAJ&oi=fnd&pg=PP10&dq=Feature+selection+for+knowledge+discovery+and+data+mining&ots=iuMhcWZGcf&sig=KlmNEIcsBdDVs-m1HUuICfpYZiM
https://doi.org/10.1109/TKDE.2005.66
https://doi.org/10.1109/TKDE.2005.66
https://doi.org/10.1007/s40314-013-0019-5

Liu, Q., Wang, J., Xiao, J., Zhu, H. (2014). Mutual information based feature selection for symbolic interval data.
In International Conference on Software Intelligence Technologies and Applications International
Conference on Frontiers of Internet of Things 2014 (pp. 62–69). Presented at the International Conference
on Software Intelligence Technologies and Applications International Conference on Frontiers of Internet of
Things 2014. https://doi.org/10.1049/cp.2014.1537.

Lokan, C. (2005). What should you optimize when building an estimation model? In Software Metrics, 2005.
11th IEEE International Symposium (pp. 1–10). https://doi.org/10.1109/METRICS.2005.55.

Lokan, C., & Mendes, E. (2009a). Investigating the use of chronological split for software effort estimation.
Software, IET, 3(5), 422–434. https://doi.org/10.1049/iet-sen.2008.0107.

Lokan, C., & Mendes, E. (2009b). Applying moving windows to software effort estimation. In Proceedings of
the 2009 3rd international symposium on empirical software engineering and measurement (pp. 111–122).
Washington, DC: IEEE Computer Society. https://doi.org/10.1109/ESEM.2009.5316019.

Lokan, C., & Mendes, E. (2012). Investigating the use of duration-based moving windows to improve software
effort prediction. In Software Engineering Conference (APSEC), 2012 19th Asia-Pacific (Vol. 1, pp. 818–
827). Presented at the Software Engineering Conference (APSEC), 2012 19th Asia-Pacific. https://doi.
org/10.1109/APSEC.2012.74.

Lustgarten, J.L., Visweswaran, S., Grover, H., Gopalakrishnan, V. (2008). An evaluation of discretization
methods for learning rules from biomedical datasets. In BIOCOMP (pp. 527–532).

Mandal, M., & Mukhopadhyay, A. (2013). An improved minimum redundancy maximum relevance approach
for feature selection in gene expression data. Procedia Technology, 10, 20–27. https://doi.org/10.1016/j.
protcy.2013.12.332.

Mendes, E., Watson, I., Triggs, C., Mosley, N., & Counsell, S. (2003). A comparative study of cost estimation
models for web hypermedia applications. Empirical Software Engineering, 8(2), 163–196.

Mendes, E., Lokan, C., Harrison, R., Triggs, C. (2005). A replicated comparison of cross-company and within-
company effort estimation models using the ISBSG database. In Software Metrics, 2005. 11th IEEE
International Symposium (pp. 1–10). https://doi.org/10.1109/METRICS.2005.4.

Moses, J., Farrow, M., Parrington, N., & Smith, P. (2006). A productivity benchmarking case study using Bayesian
credible intervals. Software Quality Journal, 14(1), 37–52. https://doi.org/10.1007/s11219-006-6000-4.

Núñez, H., Sànchez-Marrè, M., Cortés, U., Comas, J., Martínez, M., Rodríguez-Roda, I., & Poch, M. (2004). A
comparative study on the use of similarity measures in case-based reasoning to improve the classification of
environmental system situations. Environmental Modelling & Software, 19(9), 809–819. https://doi.
org/10.1016/j.envsoft.2003.03.003.

Oh, I.-S., Lee, J.-S., & Moon, B.-R. (2004). Hybrid genetic algorithms for feature selection. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 26(11), 1424–1437.

Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(8), 1226–1238. https://doi.org/10.1109/TPAMI.2005.159.

R Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for
Statistical Computing https://www.R-project.org/.

Romanski, P., & Kotthoff, L. (2014). FSelector: Selecting attributes. R package version 0.20. https://CRAN.R-
project.org/package=FSelector.

Shannon, C. E. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.
Shepperd, M., & MacDonell, S. (2012). Evaluating prediction systems in software project estimation.

Information and Software Technology, 54(8), 820–827.
Shepperd, M., & Schofield, C. (1997). Estimating software project effort using analogies. Software Engineering,

IEEE Transactions on, 23(11), 736–743.
Somol, P., Pudil, P., & Kittler, J. (2004). Fast branch & bound algorithms for optimal feature selection. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 26(7), 900–912.
Song, Q., & Shepperd, M. (2007). A new imputation method for small software project data sets. Journal of

Systems and Software, 80(1), 51–62.
Top, O. O., Ozkan, B., Nabi, M., Demirors, O. (2011). Internal and External Software Benchmark Repository

Utilization for Effort Estimation. In Software Measurement, 2011 Joint Conference of the 21st Int’l
Workshop on and 6th Int’l Conference on Software Process and Product Measurement (IWSM-
MENSURA) (pp. 302–307). https://doi.org/10.1109/IWSM-MENSURA.2011.41.

Vinh, L.T., Thang, N.D., Lee, Y.-K. (2010). An improved maximum relevance and minimum redundancy feature
selection algorithm based on normalized mutual information. In 2010 10th IEEE/IPSJ International
Symposium on Applications and the Internet (SAINT) (pp. 395–398). Presented at the 2010 10th IEEE/
IPSJ International Symposium on Applications and the Internet (SAINT). https://doi.org/10.1109
/SAINT.2010.50.

1324 Software Qual J (2018) 26:1299–1325

https://doi.org/10.1049/cp.2014.1537
https://doi.org/10.1109/METRICS.2005.55
https://doi.org/10.1049/iet-sen.2008.0107
https://doi.org/10.1109/ESEM.2009.5316019
https://doi.org/10.1109/APSEC.2012.74
https://doi.org/10.1109/APSEC.2012.74
https://doi.org/10.1016/j.protcy.2013.12.332
https://doi.org/10.1016/j.protcy.2013.12.332
https://doi.org/10.1109/METRICS.2005.4
https://doi.org/10.1007/s11219-006-6000-4
https://doi.org/10.1016/j.envsoft.2003.03.003
https://doi.org/10.1016/j.envsoft.2003.03.003
https://doi.org/10.1109/TPAMI.2005.159
https://www.r-project.org/
https://cran.r-project.org/package=FSelector
https://cran.r-project.org/package=FSelector
https://doi.org/10.1109/IWSM-MENSURA.2011.41
https://doi.org/10.1109/SAINT.2010.50
https://doi.org/10.1109/SAINT.2010.50

Witten, I.H., Frank, E., Hall, M.A., Pal, C.J. (2011). Data mining: Practical machine learning tools and
techniques. Morgan Kaufmann.

Software Qual J (2018) 26:1299–1325 1325

Marta Fernández-Diego received her European PhD in Electronics and Telecommunications Engineering from
Lille University of Science and Technology (France) in 2001. For several years, she belonged to a software
development team for mobile phone applications in an international information technology services company.
She is currently a lecturer in the Department of Business Organisation at Universitat Politècnica de València
(Spain), where she teaches in the School of Informatics. Her research interests include empirical software
engineering, software effort estimation, business analytics, and project risk management.

Fernando González-Ladrón-de-Guevara has worked at several universities and IT companies across Europe
and Latin America. At the moment, he is an Associate Professor in the Telecommunications Engineering School
at Universitat Politècnica de València (UPV). With a Ph.D. in Industrial Engineering since 2001, he has published
articles in well-known international journals and regularly participates in several organizing committees of
national and international conferences. His research interests include crowdsourcing, ERP systems, and software
engineering. He has participated in 27 research projects and contracts with different organizations, being
responsible of seven of them.

	Application of mutual information-based sequential feature selection to ISBSG mixed data
	Abstract
	Introduction
	Mutual information-based feature selection methods
	Background
	Proposed feature selection algorithms

	Methodology
	Data Pre-processing procedure
	ISBSG
	Filtering
	Initial set of features
	Categorization

	Case-based reasoning in software development effort estimation
	Comparison of Feature Selection algorithms
	Multiple 3-fold cross-validation

	Experimental results
	Accuracy of feature selection algorithms
	Convergence of the algorithms
	Influence of K value in the accuracy of the algorithms
	Accuracy of the Feature Selection algorithms

	Analysis of selected features
	Mutual information and redundancy of the independent variables
	Number of selected features depending on algorithms
	Preference of usage of selected features depending on algorithms

	Threats to validity
	Conclusions and future work
	References

